On the topology of generalized quotients

Józef Burzyk, Cezary Ferens, Piotr Mikusinski


Generalized quotients are defined as equivalence classes of pairs (x, f), where x is an element of a nonempty set X and f is an element of a commutative semigroup G acting on X. Topologies on X and G induce a natural topology on B(X,G), the space of generalized quotients. Separation properties of this topology are investigated.


Generalized quotients; Semigroup acting on a set; Quotient topology; Hausdorff topology

Full Text:



D. Bradshaw, M. Khosravi, H. M. Martin and P. Mikusinski, On Categorical and Topological Properties of Generalized Quotients, preprint.

J. Burzyk and P. Mikusinski, A generalization of the construction of a field of quotients with applications in analysis, Int. J. Math. Sci. 2 (2003), 229–236.

J. H. Carruth, J. A. Hildebrant, and R. J. Koch, The Theory of Topological Semigroups (Marcel Dekker, New York, 1983).

P. Mikusinski, Generalized Quotients with Applications in Analysis, Methods Appl. Anal. 10 (2004), 377–386.

Abstract Views

Metrics Loading ...

Metrics powered by PLOS ALM


Cited-By (articles included in Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. Convergence semigroup actions: generalized quotients
H. Boustique, Piotr Mikusinski, Gary Richardson
Applied General Topology  vol: 10  issue: 2  first page: 173  year: 2009  
doi: 10.4995/agt.2009.1731

Esta revista se publica bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Universitat Politècnica de València

e-ISSN: 1989-4147   https://doi.org/10.4995/agt