On pseudo-k-spaces

Authors

  • Anna Maria Miranda Università di Salerno

DOI:

https://doi.org/10.4995/agt.2008.1797

Keywords:

Quotient map, Product space, Locally compact space, (locally) Pseudocompact space, Pseudo-k-space

Abstract

In this note a new class of topological spaces generalizing k-spaces, the pseudo-k-spaces, is introduced and investigated. Particular attention is given to the study of products of such spaces, in analogy to what is already known about k-spaces and quasi-k-spaces.

Downloads

Download data is not yet available.

Author Biography

Anna Maria Miranda, Università di Salerno

Dip. di Matematica e Informatica

References

D. E. Cohen, Spaces with weak topology, Quart. J. Math., Oxford 5 (1954), 77–80.

http://dx.doi.org/10.1093/qmath/5.1.77

C. H. Dowker, Topology of metric complexes, Amer. J. Math. 74 (1952), 555–577.

http://dx.doi.org/10.2307/2372262

R. Engelking, General Topology, Sigma Ser. Pure Math. 6 (Heldermann, Berlin, 1989).

T. Jech, Set Theory, Academic Press, 1978.

E. Michael, Local compactness and cartesian product of quotient maps and k-spaces, Ann. Inst. Fourier 18 (1968), 281–286.

http://dx.doi.org/10.5802/aif.300

K. Morita, Product of normal spaces with metric spaces, Math. Ann. 154 (1964), 365–382.

http://dx.doi.org/10.1007/BF01362570

J. Nagata, Quotient and bi-quotient spaces of M-spaces, Proc. Japan Acad. 45 (1969), 25–29.

http://dx.doi.org/10.3792/pja/1195520897

M. Sanchis, A note on quasi-k-spaces, Rend. Ist. Mat. Univ. Trieste Suppl. XXX (1999), 173–179.

J. H. C. Whitehead, A note on a theorem due to Borsuk, Bull. Amer. Math. Soc. 54 (1948), 1125–1132.

http://dx.doi.org/10.1090/S0002-9904-1948-09138-8

Downloads

How to Cite

[1]
A. M. Miranda, “On pseudo-k-spaces”, Appl. Gen. Topol., vol. 9, no. 2, pp. 177–184, Oct. 2008.

Issue

Section

Regular Articles