Smooth fans that are endpoint rigid
DOI:
https://doi.org/10.4995/agt.2023.17922Keywords:
smooth fan, rigidity, Lelek fan, Erdős space, almost zero-dimensionalAbstract
Let X be a smooth fan and denote its set of endpoints by E(X). Let E be one of the following spaces: the natural numbers, the irrational numbers, or the product of the Cantor set with the natural numbers. We prove that there is a smooth fan X such that E(X) is homeomorphic to E and for every homeomorphism h : X → X , the restriction of h to E(X) is the identity. On the other hand, we also prove that if X is any smooth fan such that E(X) is homeomorphic to complete Erdős space, then X is necessarily homeomorphic to the Lelek fan; this adds to a 1989 result by Włodzimierz Charatonik.
Downloads
References
G. Acosta, L. C. Hoehn and Y. Pacheco Juárez, Homogeneity degree of fans, Topology Appl. 231 (2017), 320-328. https://doi.org/10.1016/j.topol.2017.09.002
G. Acosta and Y. Pacheco-Juárez, (frac{1}{3})-homogeneous dendrites, Topology Appl. 219 (2017), 55-77. https://doi.org/10.1016/j.topol.2017.01.003
A. V. Arhangel'skii and J. van Mill, Topological homogeneity, Recent progress in general topology III, Amsterdam: Atlantis Press, 2014, pp. 1-68. https://doi.org/10.2991/978-94-6239-024-9_1
J. J. Charatonik, On fans, Dissertationes Math. (Rozprawy Mat.) 54 (1967), 39 pp.
W. J. Charatonik, The Lelek fan is unique, Houston J. Math. 15, no. 1 (1989), 27-34.
H. Cook, Continua which admit only the identity mapping onto non-degenerate subcontinua, Fundam. Math. 60 (1967), 241-249. https://doi.org/10.4064/fm-60-3-241-249
J. J. Dijkstra and J. van Mill, Characterizing complete Erdős space, Can. J. Math. 61, no. 1 (2009), 124-140. https://doi.org/10.4153/CJM-2009-006-6
J. J. Dijkstra and J. van Mill, Erdős space and homeomorphism groups of manifolds, Mem. Am. Math. Soc. no. 979, Providence, RI: American Mathematical Society (AMS), 2010. https://doi.org/10.1090/S0065-9266-10-00579-X
C. Eberhart, A note on smooth fans, Colloq. Math. 20 (1969), 89-90. https://doi.org/10.4064/cm-20-1-89-90
P. Erdős, The dimension of the rational points in Hilbert space, Ann. Math. 41, no. (1940), 734-736. https://doi.org/10.2307/1968851
K. Kawamura, L. G. Oversteegen and E. D. Tymchatyn, On homogeneous totally disconnected 1-dimensional spaces, Fundam. Math. 150, no. 2 (1996), 97-112. https://doi.org/10.4064/fm-150-2-97-112
A. Lelek, On plane dendroids and their end points in the classical sense, Fund. Math. 49 (1961), 301-319. https://doi.org/10.4064/fm-49-3-301-319
S. B. Nadler, Jr., Continuum theory. An introduction, vol. 158, New York: Marcel, 1992.
A. J. M. van Engelen, Homogeneous zero-dimensional absolute Borel sets, CWI Tracts, 27. Centrum voor Wiskunde en Informatica. Amsterdam: Mathematisch Centrum. III, 133 p. (1986).
F. van Engelen, A. W. Miller and J. Steel, Rigid Borel sets and better quasiorder theory, Logic and combinatorics, Proc. AMS-IMS-SIAM Conf., Arcata/Calif. 1985, Contemp. Math. 65, 199-222, 1987. https://doi.org/10.1090/conm/065/891249
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Applied General Topology
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike- 4.0 International License.
Funding data
-
Natural Sciences and Engineering Research Council of Canada
Grant numbers RGPIN2019-05998