Smooth fans that are endpoint rigid




smooth fan, rigidity, Lelek fan, Erdős space, almost zero-dimensional


Let X be a smooth fan and denote its set of endpoints by E(X). Let E be one of the following spaces: the natural numbers, the irrational numbers, or the product of the Cantor set with the natural numbers. We prove that there is a smooth fan X such that E(X) is homeomorphic to E and for every homeomorphism h : X → X , the restriction of h to E(X) is the identity. On the other hand, we also prove that if X is any smooth fan such that E(X) is homeomorphic to complete Erdős space, then X is necessarily homeomorphic to the Lelek fan; this adds to a 1989 result by Włodzimierz Charatonik.


Download data is not yet available.

Author Biographies

Rodrigo Hernández-Gutiérrez, Universidad Autónoma Metropolitana

Associate Professor. Department of Mathematics

Logan C. Hoehn, Nipissing University

Associate Professor. Department of Computer Science and Mathematics


G. Acosta, L. C. Hoehn and Y. Pacheco Juárez, Homogeneity degree of fans, Topology Appl. 231 (2017), 320-328.

G. Acosta and Y. Pacheco-Juárez, (frac{1}{3})-homogeneous dendrites, Topology Appl. 219 (2017), 55-77.

A. V. Arhangel'skii and J. van Mill, Topological homogeneity, Recent progress in general topology III, Amsterdam: Atlantis Press, 2014, pp. 1-68.

J. J. Charatonik, On fans, Dissertationes Math. (Rozprawy Mat.) 54 (1967), 39 pp.

W. J. Charatonik, The Lelek fan is unique, Houston J. Math. 15, no. 1 (1989), 27-34.

H. Cook, Continua which admit only the identity mapping onto non-degenerate subcontinua, Fundam. Math. 60 (1967), 241-249.

J. J. Dijkstra and J. van Mill, Characterizing complete Erdős space, Can. J. Math. 61, no. 1 (2009), 124-140.

J. J. Dijkstra and J. van Mill, Erdős space and homeomorphism groups of manifolds, Mem. Am. Math. Soc. no. 979, Providence, RI: American Mathematical Society (AMS), 2010.

C. Eberhart, A note on smooth fans, Colloq. Math. 20 (1969), 89-90.

P. Erdős, The dimension of the rational points in Hilbert space, Ann. Math. 41, no. (1940), 734-736.

K. Kawamura, L. G. Oversteegen and E. D. Tymchatyn, On homogeneous totally disconnected 1-dimensional spaces, Fundam. Math. 150, no. 2 (1996), 97-112.

A. Lelek, On plane dendroids and their end points in the classical sense, Fund. Math. 49 (1961), 301-319.

S. B. Nadler, Jr., Continuum theory. An introduction, vol. 158, New York: Marcel, 1992.

A. J. M. van Engelen, Homogeneous zero-dimensional absolute Borel sets, CWI Tracts, 27. Centrum voor Wiskunde en Informatica. Amsterdam: Mathematisch Centrum. III, 133 p. (1986).

F. van Engelen, A. W. Miller and J. Steel, Rigid Borel sets and better quasiorder theory, Logic and combinatorics, Proc. AMS-IMS-SIAM Conf., Arcata/Calif. 1985, Contemp. Math. 65, 199-222, 1987.




How to Cite

R. Hernández-Gutiérrez and L. C. Hoehn, “Smooth fans that are endpoint rigid”, Appl. Gen. Topol., vol. 24, no. 2, pp. 407–422, Oct. 2023.



Regular Articles

Funding data