Some topological and cardinal properties of the Nτφ-nucleus of a space X
DOI:
https://doi.org/10.4995/agt.2023.17884Keywords:
Souslin number, weight, density, complete linked systems, Nτφ-kernel of a space, N-compact kernel of a spaceAbstract
In this paper, we study the behavior of some topological and cardinal properties of topological spaces under the influence of the Nτφ -kernel of a space X. It has been proved that the Nτφ-kernel of a space X preserves the density and the network π - weight of normal spaces. Besides, shown that the N-compact kernel of a space X preserves the Souslin properties, the weight, the density, and the π -network weight of normal spaces.
Downloads
References
A. V. Arkhangel'skii, An approximation of the theory of dyadic bicompacta, Dokl. Akad. Nauk SSSR, 184, no. 4 (1969), 767-770.
A. V. Arkhangel'skii, Topological Space of Functions, Mosk. Gos. Univ.,Moscow, 1989 (in Russian).
R. B. Beshimov, Some properties of the functor O_ β, J. Math. Sci. 133 (2006), 1599-1601. https://doi.org/10.1007/s10958-006-0070-5
R. B. Beshimov, D. N. Georgiou, and R. M. Zhuraev, Index boundedness and uniform connectedness of space of the G-permutation degree, Appl. Gen. Topol. 22, no. 2 (2021), 447-459. https://doi.org/10.4995/agt.2021.15566
R. B. Beshimov, and F. G. Mukhamadiev, Some cardinal properties of complete linked systems with compact elements and absolute regular spaces, Mathematica Aeterna 3, no. 8 (2013), 625-633.
R. B. Beshimov, and D. T. Safarova, Some tpological properties of a functor of finite degree, Lobachevskii J. Math. 42 (2021) 2744-2753. https://doi.org/10.1134/S1995080221120088
R. Engelking, General Topology, Heldermannn, Berlin, 1989.
A. V. Ivanov, The space of complete enchained systems, Siberian Math. J. 27, no. 6 (1986), 863-375. https://doi.org/10.1007/BF00970004
E. V. Kashuba, A generalization of the Katetov Theorem for seminormal functors, Tr. Petrozavodsk. Gos. Univ. Ser. Mat. no. 13 (2006), 82-89.
E. V. Kashuba, E. N. Stepanova, On the extension of seminormal functors to the category of Tychonoff spaces, Sibirsk. Mat. Zh. 59, no. 2 (2018), 362-368. Siberian Math. J. 59, no. 2 (2018), 283-287. https://doi.org/10.1134/S0037446618020118
Lj. D. R. Kočinac, F. G. Mukhamadiev, and A. K. Sadullaev, Some cardinal and geometric properties of the space of permutation degree, Axioms 11, no. 6 (2022), 290. https://doi.org/10.3390/axioms11060290
Lj. D. R. Kočinac, F. G. Mukhamadiev, and A. K. Sadullaev, Some topological and cardinal properties of the space of permutation degree, Filomat, to appear.
T. Makhmud, On cardinal invariants of spaces of linked systems, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1995, no. 4 (1995), 14--19.
F. G. Mukhamadiev, On certain cardinal properties of the N_τ φ-nucleus of a space X, J. Math. Sci. 245 (2020), 411-415. https://doi.org/10.1007/s10958-020-04704-5
F. G. Mukhamadiev, Hewitt-Nachbin number of the space of thin complete linked systems. Geometry and topology, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 197, VINITI, Moscow, 2021, 95-100. https://doi.org/10.36535/0233-6723-2021-197-95-100
F. G. Mukhamadiev, On local weak τ-density of topological spaces, Vestn. Tomsk. Gos. Univ. Mat. Mekh. 2021, no 70, 16-23. https://doi.org/10.17223/19988621/70/2
F. G. Mukhamadiev, Local τ-density of the sum and the superextension of topological spaces. Differential equations, geometry, and topology, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 201, VINITI, Moscow, 2021, 103-106. https://doi.org/10.36535/0233-6723-2021-201-103-106
T. K. Yuldashev, and F. G. Mukhamadiev, Caliber of space of subtle complete coupled systems, Lobachevskii J. Math. 42 (2021), 3043-3047. https://doi.org/10.1134/S1995080221120398
T. K. Yuldashev, and F. G. Mukhamadiev, The local density and the local weak density in the space of permutation degree and in Hattori space, Ural. Math. J. 6, no. 2 (2020), 108-116. https://doi.org/10.15826/umj.2020.2.011
T. K. Yuldashev, and F. G. Mukhamadiev, Local τ-density and local weak τ-density in topological spaces, Siberian Electronic Mathematical Reports 18, no. 1 (2021), 474-478. https://doi.org/10.33048/semi.2021.18.033
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Applied General Topology
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike- 4.0 International License.