A new modified mixed-type Ishikawa iteration scheme with error for common fixed points of enriched strictly pseudocontractive self mappings and ΦΓ-enriched Lipschitzian self mappings in uniformly convex Banach spaces
Submitted: 2022-04-22
|Accepted: 2025-02-20
|Published: 2025-04-01
Copyright (c) 2025 Imo Kalu Agwu, Naeem Saleem, Umar Isthiaq

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Downloads
Keywords:
enriched strictly pseudocontractive Mapping, $\Phi_{\Gamma}$-enriched Lipschitzian self Mapping, Modified lshikawa Mixed Type Iteration Scheme, Common Fixed Point, Uniformly Convex Banach Space, Strong Convergence
Supporting agencies:
Abstract:
Let E be a uniformly convex Banach space and C a nonempty closed bounded convex subset of E. Let Γ : C ⟶ C and G : C ⟶ C be enriched strictly pseudocontractive mapping and Φ Γ -enriched Lipschitzian mapping respectively. We introduce the above two mappings in uniformly convex Banach space and thereafter prove that a new modified mixed-type lshikawa iteration scheme converges strongly to the common fixed points of Γ and G. In addition, we incorporate error terms to enhance the convergence of
the method and also to improve the stability and robustness of the method. Our results extend and generalize the results obtained in [5] and so many other recent results currently existing in literature.
References:
M. Abbas, R. Anjum, and V. Berinde, Enriched multivalued contractions with applications to differential inclusions and dynamic programming, Symmetry 13, no. 8 (2021), 1350. https://doi.org/10.3390/sym13081350
M. Abbas, R. Anjum, and H. Iqbal, Generalized enriched cyclic contractions with application to generalized iterated function system, Chaos Solitons Fractals 154 (2022), 111591. https://doi.org/10.1016/j.chaos.2021.111591
G. L. Acedo and H. K. Xu, Iteration methods for strict pseudocontractions in Hilbert space, Nonlinear Analysis 67, no. 7 (2007), 2258-2271. https://doi.org/10.1016/j.na.2006.08.036
I. K. Agwu and D. I. Igbokwe, Hybrid-type iteration scheme for approximating fixed points of Lipschitz α-hemicontractive mappings, Advance in Fixed Point Theory 5, no. 1 (2015), 120-134.
V. Berinde, Weak and strong convergence theorems for the Kreasnolselkij iteration algorithm in the class of enriched strictly pseudocontractive operators, Analele Universitatii de Vest, Timisoara, Seria Mathematica-Informatica 56, no. 2 (2018), 13-37. https://doi.org/10.2478/awutm-2018-0013
V. Berinde, Approximating fixed points of enriched nonexpansive mappings by Krasnolselkii iteration in Hilbert spaces, Carpathian J. Math. 35, no. 3 (2019), 277-288. https://doi.org/10.37193/CJM.2019.03.04
V. Berinde, Approximating fixed points of enriched quasi nonexpansive mappings and applications, arXiv:1909.03492v1.
D. Borwein, Fixed point iteration for real functions, J. Math. Anal. Appl. 56 (1991), 112-126. https://doi.org/10.1016/0022-247X(91)90139-Q
S. Borzdynski and A. Wisnick, Applications of uniform asymptotic regularity to fixed point theorem, J. Fixed Point Theory Appl. 18 (2016), 855-866. https://doi.org/10.1007/s11784-016-0300-5
F. E. Browder and W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl. 20 (1967), 197-228. https://doi.org/10.1016/0022-247X(67)90085-6
S. Fathollah, A. Ghiura, M. Postolache, and S. Rezapour, A comparative study on the convergence rate of some iteration methods involving contractive mappings, Fixed Point Theory Applications, 2015 (2015), 234. https://doi.org/10.1186/s13663-015-0490-3
J. Gormicki, Remarks on asymptotically regularity and fixed points, J. Fixed Point Theory Appl. 21 (2019), 29. https://doi.org/10.1007/s11784-019-0668-0
T. L. Hicks and J. D. Kubicek, On the Mann iteration process in Hilbert space, J. Math. Anal. Appl. 59 (1971), 498-504. https://doi.org/10.1016/0022-247X(77)90076-2
D. I. Igbokwe, Weak and strong convergence theorems for the iterative approximation of fixed points of strictly pseudocontractive maps in arbitrary Banach spaces, J. Inequalities Pure Applied Math. 5, no. 1 (2002), 67-75.
D. I. Igbokwe, Construction of fixed points of strictly pseudocontractive mappings of Browder-Petryshyn-type in arbitrary Banach space, Advance in Fixed Point Theory and Appl. 4 (2003), 137-147.
D. I. Igbokwe, I. K. Agwu, and N. C. Ukeje, Convergence of a three-step iteration scheme to the common fixed points of mixed-type total asymptotically nonexpansive mappings, submitted for publication.
D. I. Igbokwe and S. J. Uko, Weak and strong convergence theorems for approximating fixed points of nonexpansive mappings using composite hybrid iteration method, J. Nig. Math. Soc. 33 (2014), 129-144.
S. Ishikawa, Fixed point iteration of nonexpansive mapping in Banach space, Proc. Amer. Math. Soc. 59 (1976), 65-71. https://doi.org/10.1090/S0002-9939-1976-0412909-X
A. Jeribi and B. Krichen, Functional Analysis in Banach spaces and Banach algebras. Construction of fixed points of strictly pseudocontractive mappings of Browder-Petryshyn-type in arbitrary Banach space, CRC Press-Taylor and Francis group, 2016, 120-146. https://doi.org/10.1201/b18790
J. O. Jung, Iterative approaches to common fixed points of nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 302 (2005), 509-520. https://doi.org/10.1016/j.jmaa.2004.08.022
L. Liu, Ishikawa and Mann iteration process with errors for nonlinear accretive mappings in Banach space, J. Fixed Point Theory Appl. 194, no. 1 (1995), 114-125. https://doi.org/10.1006/jmaa.1995.1289
L. Liu, Approximation of fixed points of a strictly pseudocontractive mapping, Proc. Amer. Math. Soc. 125, no. 5 (1997), 1363-1366. https://doi.org/10.1090/S0002-9939-97-03858-6
S. Maldar, F. Grsoy, Y. Atalan, and M. Abbas, On a three-step iteration process for multivalued Reich-Suzuki type α-nonexpansive and contractive mappings, Journal of Applied Mathematics and Computing 68, no. 2 (2022), 863-883. https://doi.org/10.1007/s12190-021-01552-7
Z. Opial, Weak convergence for success approximation for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597. https://doi.org/10.1090/S0002-9904-1967-11761-0
W. V. Petryshyn, Construction of fixed points for demicompact mappings in Hilbert space, J. Math. Anal. Appl. 14 (1966), 274-276. https://doi.org/10.1016/0022-247X(66)90027-8
N. Saleem, M. Abbas, B. Bin-Mohsin, and S. Radenovic, Pata type best proximity point results in metric spaces, Miskolc Mathematical Notes 21, no. 1 (2020), 367-386. https://doi.org/10.18514/MMN.2020.2764
N. Saleem, M. De la Sen, S. Farooq, Coincidence best proximity point results in Branciari metric spaces with applications, Journal of Function Spaces, 2020. https://doi.org/10.1155/2020/4126025
N. Saleem, I. Iqbal, B. Iqbal, and S. Radenovic, Coincidence and fixed points of multivalued F-contractions in generalized metric space with application, J. Fixed Point Theory Appl. 22 (2020), 81. https://doi.org/10.1007/s11784-020-00815-3
N. Saleem, H. Isik, S. Khaleeq, and C. Park, Interpolative Ciric-Reich-Rus-type best proximity point results with applications, AIMS Mathematics 7, no. 6 (2022), 9731-9747. https://doi.org/10.3934/math.2022542
N. Saleem, J. Vujakovic, W. U. Baloch, and S. Radenovic, Coincidence point results for multivalued Suzuki type mappings using θ-contraction in b-metric spaces, Mathematics 7, no. 11 (2020), 1017. https://doi.org/10.3390/math7111017
Y. Shehu and G. C. Ugwunnadi, Approximation of fixed points of nonexpansive mappings by modified Krasnoselkii-Mann iterative algorithm in Banach spaces, Thai J. Math. (2013), 1-15.
M. Tariq, M. Abbas, A. Hussain, M. Arshad, A. Ali, and H. Al-Sulami, Fixed points of non-linear set-valued (α*, φ_M)-contraction mappings and related applications, AIMS Mathematics 7, no. 5 (2022), 8861-8878. https://doi.org/10.3934/math.2022494
C. Zalinescu, On Berinde's method for comparing iterative processes, Fixed Point Theory Algorithms Sci. Eng. 2021 (2021), 2. https://doi.org/10.1186/s13663-020-00685-x



