Quasihomeomorphisms and lattice equivalent topological spaces
Submitted: 2013-09-30
|Accepted: 2013-09-30
|Downloads
Keywords:
Quasihomeomorphism, Lattice equivalence, Sober space, TD- space
Supporting agencies:
Abstract:
References:
K. Belaid, O. Echi and R. Gargouri, A-spectral spaces, Topology Appl. 138 (2004), 315–322. http://dx.doi.org/10.1016/j.topol.2003.08.009
E. Bouacida, O. Echi and E. Salhi, Foliations, spectral topology, and special morphisms, Advances in commutative ring theory (Fez, 1997), 111–132, Lecture Notes in Pure and Appl. Math. 205, Dekker, New York, 1999.
E. Bouacida, O. Echi and E. Salhi, Feuilletages et topologie spectrale, J. Math. Soc. Japan 52 (2000), 447–464. http://dx.doi.org/10.2969/jmsj/05220447
P. D. Finch, On the lattice-equivalence of topological spaces, J. Austral. Math. Soc. 6 (1966), 495–511. http://dx.doi.org/10.1017/S1446788700004973
A. Grothendieck and J. Dieudonné, Eléments de Géométrie Algébrique, Die Grundlehren der mathematischen Wissenschaften, 166, Springer-Verlag, New York, 1971.
A. Grothendieck and J. Dieudonné, Eléments de Géométrie Algébrique. I. Le langage des schemas, Inst. Hautes Etudes Sci. Publ. Math. No. 4, 1960.
M. Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc. 142 (1969), 43–60. http://dx.doi.org/10.1090/S0002-9947-1969-0251026-X
W. J. Thron, Lattice-equivalence of topological spaces, Duke Math. J. 29 (1962), 671–679. http://dx.doi.org/10.1215/S0012-7094-62-02968-X
K. W. Yip, Quasi-homeomorphisms and lattice-equivalences of topological spaces, J. Austral. Math. Soc. 14 (1972), 41–44. http://dx.doi.org/10.1017/S1446788700009617