On an algebraic version of Tamano’s theorem

Authors

  • Raushan Z. Buzyakova University of North Carolina Greensboro (UNCG)

DOI:

https://doi.org/10.4995/agt.2009.1735

Keywords:

Topological group, Hausdorff compactification, Normal space, Stationary set

Abstract

Let X be a non-paracompact subspace of a linearly ordered topological space. We prove, in particular, that if a Hausdorff topological group G contains closed copies of X and a Hausdorff compactification bX of X then G is not normal. The theorem also holds in the class of monotonically normal spaces.

Downloads

Download data is not yet available.

Author Biography

Raushan Z. Buzyakova, University of North Carolina Greensboro (UNCG)

Mathematics Department

References

Z. Balogh and M. E. Rudin, Monotone normality, Topology Appl. 47 (1992), no. 2, 115-127. https://doi.org/10.1016/0166-8641(92)90066-9

R. Z. Buzyakova, Ordinals in topological groups, Fund. Math. 196 (2007), no. 2, 127-138. https://doi.org/10.4064/fm196-2-3

D. J. Lutzer, Ordered topological spaces, Surveys in general topology, pp. 247-295, Academic Press, New York-London-Toronto, Ont., 1980. https://doi.org/10.1016/B978-0-12-584960-9.50014-6

O. V. Sipacheva, The topology of free topological group, Fundam. Prikl. Mat. 9 (2003), no. 2, 99-204

English translation in J. Math. Sci. (N. Y.) 131 (2005), no. 4, 5765-5838. https://doi.org/10.1007/s10958-005-0445-z

H. Tamano, On paracompactness, Pacific J. Math. 10 (1960) 1043-1047. http://dx.doi.org/10.2140/pjm.1960.10.1043 https://doi.org/10.2140/pjm.1960.10.1043

Downloads

How to Cite

[1]
R. Z. Buzyakova, “On an algebraic version of Tamano’s theorem”, Appl. Gen. Topol., vol. 10, no. 2, pp. 221–225, Oct. 2009.

Issue

Section

Articles