On an algebraic version of Tamano’s theorem


  • Raushan Z. Buzyakova University of North Carolina Greensboro (UNCG)




Topological group, Hausdorff compactification, Normal space, Stationary set


Let X be a non-paracompact subspace of a linearly ordered topological space. We prove, in particular, that if a Hausdorff topological group G contains closed copies of X and a Hausdorff compactification bX of X then G is not normal. The theorem also holds in the class of monotonically normal spaces.


Download data is not yet available.

Author Biography

Raushan Z. Buzyakova, University of North Carolina Greensboro (UNCG)

Mathematics Department


Z. Balogh and M. E. Rudin, Monotone normality, Topology Appl. 47 (1992), no. 2, 115-127. https://doi.org/10.1016/0166-8641(92)90066-9

R. Z. Buzyakova, Ordinals in topological groups, Fund. Math. 196 (2007), no. 2, 127-138. https://doi.org/10.4064/fm196-2-3

D. J. Lutzer, Ordered topological spaces, Surveys in general topology, pp. 247-295, Academic Press, New York-London-Toronto, Ont., 1980. https://doi.org/10.1016/B978-0-12-584960-9.50014-6

O. V. Sipacheva, The topology of free topological group, Fundam. Prikl. Mat. 9 (2003), no. 2, 99-204

English translation in J. Math. Sci. (N. Y.) 131 (2005), no. 4, 5765-5838. https://doi.org/10.1007/s10958-005-0445-z

H. Tamano, On paracompactness, Pacific J. Math. 10 (1960) 1043-1047. http://dx.doi.org/10.2140/pjm.1960.10.1043 https://doi.org/10.2140/pjm.1960.10.1043


How to Cite

R. Z. Buzyakova, “On an algebraic version of Tamano’s theorem”, Appl. Gen. Topol., vol. 10, no. 2, pp. 221–225, Oct. 2009.



Regular Articles