Continuous utility functions on submetrizable hemicompact k-spaces


  • Alessandro Caterino Università degli Studi di Perugia
  • Rita Ceppitelli Università degli Studi di Perugia
  • Francesca Maccarino



Closed preorder, Jointly continuous utility function, Hemicompact, Submetrizable, k-space


Some theorems concerning the existence of continuous utility functions for closed preorders on submetrizable hemicompact k-spaces are proved. These spaces are precisely the inductive limits of increasing sequences of metric compact subspaces and in general are neither metrizable nor locally compact. These results generalize some well known theorems due to Levin.


Download data is not yet available.

Author Biographies

Alessandro Caterino, Università degli Studi di Perugia

Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, Via Vanvitelli 1, 06123, Perugia, Italy

Rita Ceppitelli, Università degli Studi di Perugia

Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, Via Vanvitelli 1, 06123, Perugia, Italy

Francesca Maccarino

Via Pian del Vantaggio 10A, 05018 Orvieto (Terni), Italy


R. Aumann, Utility theory without the completeness axiom, Econometrica 30 (1962), 445–462.

K. Back, Concepts of similarity for utility functions, Journal of Mathematical Economics 15 (1986), 129–142.

G. Beer, Topologies on Closed and Closed Convex Sets, Kluwer (1993).

D. S. Bridges, Preference and utility: a constructive development, Journal of Mathematical Economics 9 (1982), 165–185.

D. S. Bridges and G. B.Mehta, Representations of preference orderings, Springer-Verlag, Berlin, 1995.

J. C. Candeal, E. Indurain and G. B. Mehta, Some utility theorems on inductive limits of preordered topological spaces, Bull. Austral. Math. Soc. 52 (1995), 235–246.

C. Castaing, P. Raynaud de Fitte and A. Salvadori, Some variational convergence results with applications to evolution inclusions, Adv. Math. Econ. 8 (2006), 33–73.

C. Castaing, P. Raynaud de Fitte and M. Valadier, Young Measures on Topological Spaces with Applications in Control Theory and Probability Theory, Kluwer Academic Publishers Dordrecht 571 (2004).

G. Debreu, Neighbouring economic agents, La Decision. Paris: Editions du Centre National de la Recherche Scientifique (1969).

R. Engelking, General Topology, Polish Scientific Publishers, Warszaw, (1977).

S. P. Franklin and B. V. Smith Thomas, A survey of k!-spaces, Topology Proceedings 2 (1977), 111-124.

G. Herden and A. Pallack, On the continuous analogue of the Szpilrajn Theorem I, Mathematical Social Sciences 43 (2002), 115–134.

W. Hildebrand, On economies with many agents, Journal of Economic Theory 2 (1970), 1–188.

Y. Kannai, Continuous properties of the core of a market, Econometrica 38 (1970), 791–815.

J. L . Kelley, General topology, D. Van Nostrand Company (1955).

V. L. Levin, A continuous utility theorem for closed preorders on a -compact metrizable space, Soviet. Math. Dokl. 28 (1983), 715–718.

V. L. Levin, Measurable utility theorems for closed and lexicographic preference relations, Soviet. Math. Dokl. 27 (1983), 639–643.

V. L. Levin, Functionally closed preorders and strong stochastic dominance, Soviet. Math. Dokl. 32 (1985), 22–26.

V. L. Levin and A. A. Milyutin, The problem of mass transfer with a discontinous cost function and a mass statement of the duality problem for convex extremal problems, Russian Math. Surveys 34 (1978), no. 3, 1–78.

A. Mas-Colell, On the continuous representation of preorders, International Economic Review, 18 (1977), 509–513.

R. A. McCoy and I. Ntantu, Topological properties of spaces of continuous functions, Springer-Verlag (1980).

G. B. Mehta, Some general theorems on the existence of order-preserving functions, Mathematical Social Sciences 15 (1988), 135–146.

G. B. Mehta, Preference and Utility, in Handbook of Utility Theory, Volume 1, eds. S. Barberà, P. Hammond and C. Seidl. Dordrecht: Kluwer Academic Publishers, (1998), 1–47.

E. Michael, Continous selections, Annals of Mathematics 63 (1956), 361–382.

L. Nachbin,Topology and order, Van Nostrand, Princeton (1965).

E. A. Ok, Utility representation of an incomplete preference relation, Journal of Economic Theory 104 (2002), 429–449.

B. Peleg, Utility functions for partially ordered topological spaces, Econometrica, 38 (1970), 93–96.

N. E. Steenrod, A convenient category of topological spaces, Mich. Math. J. 14 (1967), 133–152.


How to Cite

A. Caterino, R. Ceppitelli, and F. Maccarino, “Continuous utility functions on submetrizable hemicompact k-spaces”, Appl. Gen. Topol., vol. 10, no. 2, pp. 187–195, Oct. 2009.



Regular Articles