Convergence semigroup actions: generalized quotients
Submitted: 2013-09-30
|Accepted: 2013-09-30
|Downloads
Keywords:
Continuous action, Convergence space, Quotient map, Semigroup
Supporting agencies:
Abstract:
References:
J. Burzyk, C. Ferens and P. Mikusinski, On the topology of generalized quotients, Applied Gen. Top. 9 (2008), 205–212.
D. Kent, Convergence quotient maps, Fund. Math. 65 (1969), 197–205.
D. Kent and G. Richardson, Open and proper maps between convergence spaces, Czech. Math. J. 23(1973), 15–23.
D. Kent and G. Richardson, The regularity series of a convergence space, Bull. Austral. Math. Soc. 13 (1975), 21–44. http://dx.doi.org/10.1017/S0004972700024229
M. Khosravi, Pseudoquotients: Construction, applications, and their Fourier transform, Ph.D. dissertation, Univ. of Central Florida, Orlando, FL, 2008.
P. Mikusinski, Boehmians and generalized functions, Acta Math. Hung. 51 (1988), 271–281. http://dx.doi.org/10.1007/BF01903334
P. Mikusinski, Generalized quotients with applications in analysis, Methods and Applications of Anal. 10 (2003), 377–386. http://dx.doi.org/10.4310/MAA.2003.v10.n3.a4
W. Park, Convergence structures on homeomorphism groups, Math. Ann. 199 (1972), 45–54. http://dx.doi.org/10.1007/BF01419575
W. Park, A note on the homeomorphism group of the rational numbers, Proc. Amer. Math. Soc. 42 (1974), 625–626. http://dx.doi.org/10.1090/S0002-9939-1974-0341368-9
N. Rath, Action of convergence groups, Topology Proceedings 27 (2003), 601–612.