The largest topological ring of functions endowed with the m-topology

Authors

  • Tarun Kumar Chauhan Malaviya National Institute of Technology Jaipur
  • Varun Jindal Malaviya National Institute of Technology Jaipur

DOI:

https://doi.org/10.4995/agt.2022.17080

Keywords:

locally bounded functions, real valued functions, rings of functions, m-topology

Abstract

The purpose of this article is to identify the largest subring of the ring of all real valued functions on a Tychonoff space X, which forms a topological ring endowed with the m-topology.

Downloads

Download data is not yet available.

Author Biographies

Tarun Kumar Chauhan, Malaviya National Institute of Technology Jaipur

Department of Mathematics

Varun Jindal, Malaviya National Institute of Technology Jaipur

Department of Mathematics

References

F. Azarpanah, F. Manshoor and R. Mohamadian, Connectedness and compactness in C(X) with m-topology and generalized m-topology, Topol. Appl. 159 (2012), 3486-3493. https://doi.org/10.1016/j.topol.2012.08.010

F. Azarpanah, M. Paimann and A. R. Salehi, Connectedness of some rings of quotients of C(X) with them-topology, Comment. Math. Univ. Carolin. 56 (2015), 63-76. https://doi.org/10.14712/1213-7243.015.106

L. Gillman and M. Jerison, Rings of continuous functions, Springer-Verlag, New York,1976. Reprint of the 1960 edition, Graduate Texts in Mathematics, No. 43. https://doi.org/10.1007/978-1-4615-7819-2

J. Gomez-Prez and W. W. McGovern, Them-topology on C m(X) revisited, Topol. Appl. 153, no. 11 (2006), 1838-1848. https://doi.org/10.1016/j.topol.2005.06.016

E. Hewitt, Rings of real-valued continuous functions. I, Trans. Amer. Math. Soc. 64(1948), 45-99. https://doi.org/10.1090/S0002-9947-1948-0026239-9

L. Hola and V. Jindal, On graph and fine topologies, Topol. Proc. 49 (2017), 65-73.

L. Hola and R. A. McCoy, Compactness in the fine and related topologies, Topol. Appl.109 (2001), 183-190. https://doi.org/10.1016/S0166-8641(99)00160-1

L. Hola and B. Novotny, Topology of uniform convergence and m-topology on C(X), Mediterr. J. Math. 14 (2017): 70. https://doi.org/10.1007/s00009-017-0861-6

J. G. Horne, Countable paracompactness and cb-spaces, Notices. Amer. Math. Soc. 6 (1959), 629-630.

J. Mack, On a class of countably paracompact spaces, Proc. Amer. Math. Soc. 16 (1965),467-472. https://doi.org/10.1090/S0002-9939-1965-0177388-1

G. Di Maio, L. Hola, D. Holy and R. A. McCoy, Topologies on the space of continuous functions, Topol. Appl. 86 (1998), 105-122. https://doi.org/10.1016/S0166-8641(97)00114-4

R. A. McCoy, Fine topology on function spaces, Int. J. Math. Math. Sci. 9 (1986),417-424. https://doi.org/10.1155/S0161171286000534

R. A. McCoy, S. Kundu and V. Jindal, Function spaces with uniform, fine and graphtopologies, Springer Briefs in Mathematics, Springer, Cham, 2018. https://doi.org/10.1007/978-3-319-77054-3

Downloads

Published

2022-10-03

How to Cite

[1]
T. K. Chauhan and V. Jindal, “The largest topological ring of functions endowed with the m-topology”, Appl. Gen. Topol., vol. 23, no. 2, pp. 281–286, Oct. 2022.

Issue

Section

Articles

Funding data