A Kuratowski-Mrówka type characterization of fibrewise compactness

Clara M. Neira U.


In this paper a Kuratowski-Mrówka type characterization of fibrewisecompact topological spaces is presented.


Fibrewise compactness; Kuratowski-Mrówka characterization; Tied filter; Tied ultrafilter

Full Text:



J. Adámek, H. Herrlich and G. E. Strecker, Abstract and Concrete Categories. The Joy of Cats, Wiley & Sons, 1990.

N. Bourbaki, General Topology, Addison Wesley, 1966.

D. Buhagiar, The category MAP, Mem. Fac. Sci. Eng. Shimane Univ. Series B: Mathematical Science, 34 (2001), 1–19.

E. Cech, Topological spaces, John Wiley and Sons, 1966.

M. M. Clementino, On categorical notions of compact objects, Appl. Cat. Struct. 4 (1996), 15–29. http://dx.doi.org/10.1007/BF00124111

M. M. Clementino, E. Giuli and W. Tholen, Topology in a category: compactness, Portugal. Math. 53 (1996), 397–433.

A. Dold, Fibrewise topology, by I. M. James. Book reviews, Bulletin (New Series) of the American Mathematical Society, 24 No. 1 (Jan., 1991), pp. 246–248.

H. Herrlich, G. Salicrup and G. E. Strecker, Factorizations, denseness, separation and relatively compact objects, Topology Appl. 27 (1987), 157–169. http://dx.doi.org/10.1016/0166-8641(87)90102-7

I. M. James, Fibrewise Topology, Cambridge University Press, 1989. http://dx.doi.org/10.1017/CBO9780511896835

E. G. Manes, Compact, Hausdorff objects, Gen. Topology Appl. 4 (1974), 341–360. http://dx.doi.org/10.1016/0016-660X(74)90011-7

G. Richter, Exponentiability for maps means fibrewise core-compactness, J. Pure Appl. Algebra 187 (2004), 295–303. p://dx.doi.org/10.1016/S0022-4049(03)00128-2

S. Willard, General Topology, Addison-Wesley Publishing Company, 1970.

Abstract Views

Metrics Loading ...

Metrics powered by PLOS ALM

Esta revista se publica bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Universitat Politècnica de València

e-ISSN: 1989-4147   https://doi.org/10.4995/agt