Hypercyclic abelian semigroup of matrices on Cn and Rn and k-transitivity (k ≥ 2)

Adlene Ayadi

Abstract

We prove that the minimal number of matrices on Cn required to forma hypercyclic abelian semigroup on Cn is n+1. We also prove that theaction of any abelian semigroup finitely generated by matrices on Cnor Rn is never k-transitive for k 2. These answer questions raised byFeldman and Javaheri.

Keywords

Hypercyclic; Tuple of matrices; Semigroup; Subgroup; Dense orbit; Transitive; Semigroup action

Full Text:

PDF

References

A. Ayadi and H. Marzougui, Dynamic of Abelian subgroups of GL(n, C): a structure Theorem, Geom. Dedicata 116 (2005), 111–127. http://dx.doi.org/10.1007/s10711-005-9007-2

A. Ayadi and H. Marzougui, Dense orbits for abelian subgroups of GL(n, C), Foliations 2005: World Scientific, Hackensack, NJ (2006), 47–69.

F. Bayart and E. Matheron, Dynamics of Linear Operators, Cambridge Tracts in Math., 179, Cambridge University Press, 2009. http://dx.doi.org/10.1017/CBO9780511581113

G. Costakis, D. Hadjiloucas and A. Manoussos, Dynamics of tuples of matrices, Proc. Amer. Math. Soc. 137, no. 3 (2009), 1025–1034. http://dx.doi.org/10.1090/S0002-9939-08-09717-7

G. Costakis, D. Hadjiloucas and A. Manoussos, On the minimal number of matrices which form a locally hypercyclic, non-hypercyclic tuple, J. Math. Anal. Appl. 365 (2010), 229–237. http://dx.doi.org/10.1016/j.jmaa.2009.10.020

N. S. Feldman, Hypercyclic tuples of operators and somewhere dense orbits, J. Math. Anal. Appl. 346 (2008), 82–98. http://dx.doi.org/10.1016/j.jmaa.2008.04.027

M. Javaheri, Topologically transitive semigroup actions of real linear fractional transformations , J. Math. Anal. Appl. 368 (2010), 587–603. http://dx.doi.org/10.1016/j.jmaa.2010.03.028

Abstract Views

1218
Metrics Loading ...

Metrics powered by PLOS ALM




Esta revista se publica bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Universitat Politècnica de València

e-ISSN: 1989-4147   https://doi.org/10.4995/agt