### Universal elements for some classes of spaces

#### Abstract

**<**K)and P(Dm K, B E < K) of all spaces X for which dm K,B E (X) < K and Dm K, B E (X) < K, respectively there exist universal elements. In this paper, we give some new dimension-like functions and define using these definitions classes of spaces in which there are universal elements.

#### Keywords

#### Full Text:

PDF#### References

R. Engelking, Theory of dimensions, finite and infinite, Sigma Series in Pure Mathematics, 10. Heldermann Verlag, Lemgo, 1995. viii+401 pp.

S. D. Iliadis, Universal spaces and mappings, North-Holland Mathematics Studies, 198. Elsevier Science B.V., Amsterdam, 2005. xvi+559 pp.

D. N. Georgiou, S. D. Iliadis and A.C. Megaritis, Dimension-like functions and universality, Topology Appl. 155 (2008), 2196–2201. http://dx.doi.org/10.1016/j.topol.2007.05.024

A. K. O’Connor, A new approach to dimension, Acta Math. Hung. 55, no. 1-2 (1990), 83–95. http://dx.doi.org/10.1007/BF01951390

R. Pol, There is no universal totally disconnected space, Fund. Math. 79 (1973), 265–267.

Abstract Views

_{Metrics powered by PLOS ALM}

Esta revista se publica bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. Universitat Politècnica de València e-ISSN: 1989-4147 https://doi.org/10.4995/agt |