Some fixed point theorems on the class of comparable partial metric spaces

Erdal Karapinar


In this paper we present existence and uniqueness criteria of a fixed point for a self mapping on a non-empty set endowed with two comparable partial metrics.


Partial metric space; Fixed point theory; Comparable metrics

Subject classification

6N40; 47H10; 54H25; 46T99

Full Text:



T. Abdeljawad, E. Karapınar, K. Tas, Existence and uniqueness of common fixed point on partial metric spaces, Appl. Math. Lett. 24, no. 11 (2011), 1894-1899.

I. Altun, F. Sola and H. Simsek, Generalized contractions on partial metric spaces, Topology Appl. 157, no. 18 (2010), 2778-2785.

E. Karapınar, Generalizations of Caristi Kirk's Theorem on partial metric spaces, Fixed Point Theory Appl. 2011:4.

E. Karapınar and I. M. Erhan, Fixed point theorems for operators on partial metric spaces, Appl. Math. Lett. 24, no. 11 (2011), 1900-1904.

E. Karapınar, Weak o-contraction on partial contraction and existence of fixed points in partially ordered sets, Mathematica Aeterna 1(4),(2011), 237-244.

E. Karapınar, Weak o-contraction on partial metric spaces, J. Comput. Anal. Appl. (in press).

R. Kopperman, S. G. Matthews and H. Pajoohesh, What do partial metrics represent, Spatial representation: discrete vs. continuous computational models, Dagstuhl Seminar Proceedings, No. 04351, Internationales Begegnungs und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany, (2005).

H.-P. A. Künzi, H. Pajoohesh and M.P. Schellekens, Partial quasi-metrics, Theor. Comput. Sci. 365, no. 3 (2006), 237-246.

M. G. Maia, Un'osservazione sulle contrazioni metriche, Rend. Sem. Mat. Univ. Padova 40 (1968), 139-143.

S. G. Matthews, Partial metric topology, Research Report 212, Dept. of Computer Science, University of Warwick, 1992.

S. G. Matthews, Partial metric topology, in: General Topology and its Applications, Proc. 8th Summer Conf., Queen's College (1992), Annals of the New York Academy of Sciences, 728 (1994), 183-197.

S. J. O'Neill, Two topologies are better than one, Tech. report, University of Warwick, Coventry, UK,, 1995.

S. Romaguera and M. Schellekens, Weightable quasi-metric semigroup and semilattices, Electron. Notes Theor. Comput. Sci. 40 (2001), 347-358.

M. P. Schellekens, A characterization of partial metrizability: domains are quantifiable, Theor. Comput. Sci. 305, no. 1-3 (2003), 409-432.

S. Oltra and O. Valero, Banach's fixed point theorem for partial metric spaces, Rend. Ist. Mat. Univ. Trieste 36, no. 1-2 (2004), 17-26.

O. Valero, On Banach fixed point theorems for partial metric spaces, Appl. Gen. Topol 6, no. 2 (2005), 229-240.

S. Oltra, S. Romaguera and E. A. Sánchez-Pérez, The canonical partial metric and uniform convexity on normed spaces, Appl. Gen. Topol. 6, no. 2 (2005), 185-194.

Abstract Views

Metrics Loading ...

Metrics powered by PLOS ALM

Esta revista se publica bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Universitat Politècnica de València

e-ISSN: 1989-4147