Morse theory for C*-algebras: a geometric interpretation of some noncommutative manifolds

Authors

  • Vida Milani Shahid Beheshti University
  • Ali Asghar Rezaei Shahid Beheshti University
  • Seyed M.H. Mansourbeigi Polytechnic University NY

DOI:

https://doi.org/10.4995/agt.2011.1650

Keywords:

C*-algebra, Critical points, CW complexes, Homotopy equivalence, Homotopy type, Morse function, Noncommutative CW complex, Poset, Pseudo-homotopy type, *-representation, Simplicial complex

Abstract

The approach we present is a modification of the Morse theory for unital C*-algebras. We provide tools for the geometric interpretation of noncommutative CW complexes. Some examples are given to illustrate these geometric information. The main object of this work is a classification of unital C*-algebras by noncommutative CW complexes and the modified Morse functions on them.

Downloads

Download data is not yet available.

Author Biographies

Vida Milani, Shahid Beheshti University

Dept. of Math., Faculty of Math. Sci., Shahid Beheshti University, Tehran, Iran.

School of Mathematics, Georgia Institute of Technology, Atlanta GA, USA.

vmilani3@math.gatech.edu

Ali Asghar Rezaei, Shahid Beheshti University

Dept. of Math., Faculty of Math. Sci.

Seyed M.H. Mansourbeigi, Polytechnic University NY

Dept. of Electrical Engineering

References

A. Connes, Noncommutative Geometry, Academic Press, 1994.

J. Cuntz, Noncommutative Simplicial Complexes and the Baum-Connes Conjecture, arxiv: math/0103219.

J. Cuntz, Quantum spaces and their noncommutative topology, Notices Am. Math. Soc. 48, no. 8 (2001), 793-799.

D. N. Diep, The structure of C*-Algebras of type I, Vestn. Mosk. Univ., Ser. I, no. 2 (1978), 81-87.

J. Dixmier, Les C*-Algèbres et Leurs Représentations, Gauthier-Villars, (1969).

A. Duval, A combinatorial decomposition of simplicial complexes, Isr. J. Math. 87 (1994), 77-87. https://doi.org/10.1007/BF02772984

S. Eilers, T. A. Loring and G. K. Pedersen, Stability of anticommutation relations: an application to NCCW complexes, J. Reine Angew Math. 499 (1998), 101-143. https://doi.org/10.1515/crll.1998.055

J. M. G. Fell and R. S. Doran, Representations of *-Algebras, Locally Compact Groups and Banach *-Algebraic Bundles, Academic Press, 1988.

R. Forman, Morse theory for cell complexes, Adv. in math. 134 (1998). https://doi.org/10.1006/aima.1997.1650

R. Forman, Witten-Morse theory for cell complexes, Topology 37 (1998), 945-979. https://doi.org/10.1016/S0040-9383(97)00071-2

J. M. Gracia-Bondia, J. C. Varilly and H. Figueroa, Elements of Noncommutative Geometry, Birkhauser, 2001. https://doi.org/10.1007/978-1-4612-0005-5

A. Hatcher, Algebraic Topology, Cambridge Univ. Press, 2002.

G. Landi, An Introduction to Noncommutative Spaces and Their Geometry, arXiv:hepth/9701078.

J. Milnor, Morse Theory, Annals of Math. Studies, Princeton Univ. Press, (1963).

G. K. Pedersen, Pullback and pushout constructions in C*-algebras, J. Funct. Anal. 167 (1999), 243-344. https://doi.org/10.1006/jfan.1999.3456

Downloads

How to Cite

[1]
V. Milani, A. A. Rezaei, and S. M. Mansourbeigi, “Morse theory for C*-algebras: a geometric interpretation of some noncommutative manifolds”, Appl. Gen. Topol., vol. 12, no. 2, pp. 175–185, Oct. 2011.

Issue

Section

Regular Articles