Mappings on weakly Lindelöf and weakly regular-Lindel¨of spaces

Anwar Jabor Fawakhreh

Saudi Arabia

Qassim University

Department of Mathematics, Collage of Science, Qassim University, P.O. Box 6644, Buraydah 51402, Saudi Arabia.

Adem Kiliçman

Malaysia

University Putra Malaysia

Department of Mathematics and Institute for Mathematical Research, University Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
|

Accepted: 2013-07-31

|
DOI: https://doi.org/10.4995/agt.2011.1647
Funding Data

Downloads

Keywords:

Lindelöf, weakly Lindelöf and weakly regular-Lindel¨of space, Almost continuous and almost precontinuous functions

Supporting agencies:

This research was not funded

Abstract:

In this paper we study the effect of mappings and some decompositions of continuity on weakly Lindelöf spaces and weakly regular-Lindelöf spaces. We show that some mappings preserve these topological properties. We also show that the image of a weakly Lindelöf space (resp. weakly regular-Lindelöf space) under an almost continuous mapping is weakly Lindelöf (resp. weakly regular-Lindelöf). Moreover, the image of a weakly regular-Lindelöf space under a precontinuous and contracontinuousmapping is Lindelöf.
Show more Show less

References:

M. E. Abd El-Monsef, S. N. El-Deep and R. A. Mahmoud, B-open sets and B-continuous mappings, Bull. Fac. Sci. Assiut Univ. 12 (1983), 77–90.

G. Balasubramanian, On some generalizations of compact spaces, Glasnik Mat. 17, no. 37 (1982), 367–380.

F. Cammaroto and G. Lo Faro, Spazi weakly compact, Riv. Mat. University Parma 4, no. 7(1981), 383–395.

F. Cammaroto and G. Santoro, Some counterexamples and properties on generalizations of Lindelöf spaces, Internat. J. Math. Math. Sci. 19, no. 4(1996), 737–746. http://dx.doi.org/10.1155/S0161171296001020

J. Dontchev, Contra-continuous functions and strongly S-closed spaces, Internat. J. Math. Math. Sci. 19 (1996), 303–310. http://dx.doi.org/10.1155/S0161171296000427

J. Dontchev and M. Przemski, On the various decompositions of continuous and some weakly continuous functions, Acta Math. Hungar. 71, no. 1-2 (1996), 109–120. http://dx.doi.org/10.1007/BF00052199

A. J. Fawakhreh and A. Kılı¸cman, On generalizations of regular-Lindelöf spaces, Internat. J. Math. Math. Sci. 27, no. 9 (2001), 535–539. http://dx.doi.org/10.1155/S016117120100713X

A. J. Fawakhreh and A. Kılı¸cman, Mappings and some decompositions of continuity on nearly Lindelöf spaces, Acta Math. Hungar. 97, no. 3 (2002), 199–206. http://dx.doi.org/10.1023/A:1020803027828

Z. Frolik, Generalization of compact and Lindelöf spaces, Czechoslovak Math. J. 9, no. 84 (1959), 172–217.

J. K. Kohli and D. Singh, Between strong continuity and almost continuity, Appl. Gen. Topol. 11, no. 1 (2010), 29–42.

A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deep, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt 53 (1982), 47–53.

A. A. Nasef and T. Noiri, Some weak forms of almost continuity, Acta Math. Hungar. 74, no. 3 (1997), 211–219. http://dx.doi.org/10.1023/A:1006507816942

T. Noiri and V. Popa, On almost B-continuous functions, Acta Math. Hungar. 79, no. 4 (1998), 329–339. http://dx.doi.org/10.1023/A:1006519213848

M. K. Singal and S. P. Arya, On almost regular spaces, Glasnik Math. Ser. III 4, no. 24(1969), 89–99.

M. K. Singal and S. P. Arya, On nearly paracompact spaces, Mat. Vesnik 6, no. 21 (1969), 3–16.

M. K. Singal and A. R. Singal, Almost-continuous mappings, Yokohama Math. J. 16 (1968), 63–73.

Y. Song and Y. Zhang, Some remarks on almost Lindelöf spaces and weakly Lindelöf spaces, Mat. Vesnik 62, no. 1 (2010), 77–83.

S. Willard and U. N. B. Dissanayake, The almost Lindelöf degree, Canad. Math. Bull. 27, no. 4 (1984), 452–455. http://dx.doi.org/10.4153/CMB-1984-070-2

Show more Show less