Some remarks on chaos in topological dynamics

Huoyung Wang, Heman Fu


Bau-Sen Du introduced a notion of chaos which is stronger than Li-Yorke sensitivity. A TDS (X, f) is called chaotic if there is a positive e such that for any x and any nonempty open set V of X there is a point y in V such that the pair (x, y) is proximal but not e-asymptotic. In this article, we show that a TDS (T, f) is transitive but not mixing if and only if (T, f) is Li-Yorke sensitive but not chaotic, where T is a tree. Moreover, we compare such chaos with other notions of chaos.


Sensitivity; Chaos; Tree maps

Full Text:



E. Akin and S. Kolyada, Li-Yorke sensitivity, Nonlinearity 16 (2003), 1421–1433.

L. Alseda, S. Kolyada, J. Llibre and L. Snoha, Entropy and Periodic points for tree maps, Trans. Amer. Math. Soc. 351 (1997), 1551–1573.

R. Devaney, Chaotic Dynamical Systems, Addison-Wesley, Redwood City, 1980.

B. Du, On the nature of chaos, arXiv: math.DS/0602585 v1 26 Feb 2006.

T. Li and J. Yorke, Period 3 implies chaos, Amer. Math. Monthly 82 (1975), 985–992.

J. Mycielski, Independent sets in topological algebras, Fund. Math. 55 (1964), 139–147.

L. Wang, Z. Chen and G. Liao, The complexity of a minimal sub-shift on symbolic spaces, J. Math. Anal. Appl. 37 (2006), 136–145.

X. Ye, The center and the depth of the center of a tree map, Bull. Austral. Math. Soc. 48 (1993), 347–350.

X. Ye, W. Huang and S. Shao, An Introduction to Topolgical Dynamics, Science Press, Bejing, 2008. [Chinese]

Abstract Views

Metrics Loading ...

Metrics powered by PLOS ALM

Esta revista se publica bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Universitat Politècnica de València

e-ISSN: 1989-4147