Some remarks on chaos in topological dynamics
Abstract
Keywords
References
E. Akin and S. Kolyada, Li-Yorke sensitivity, Nonlinearity 16 (2003), 1421–1433. http://dx.doi.org/10.1088/0951-7715/16/4/313
L. Alseda, S. Kolyada, J. Llibre and L. Snoha, Entropy and Periodic points for tree maps, Trans. Amer. Math. Soc. 351 (1997), 1551–1573. http://dx.doi.org/10.1090/S0002-9947-99-02077-2
R. Devaney, Chaotic Dynamical Systems, Addison-Wesley, Redwood City, 1980.
B. Du, On the nature of chaos, arXiv: math.DS/0602585 v1 26 Feb 2006.
T. Li and J. Yorke, Period 3 implies chaos, Amer. Math. Monthly 82 (1975), 985–992. http://dx.doi.org/10.2307/2318254
J. Mycielski, Independent sets in topological algebras, Fund. Math. 55 (1964), 139–147.
L. Wang, Z. Chen and G. Liao, The complexity of a minimal sub-shift on symbolic spaces, J. Math. Anal. Appl. 37 (2006), 136–145. http://dx.doi.org/10.1016/j.jmaa.2005.12.069
X. Ye, The center and the depth of the center of a tree map, Bull. Austral. Math. Soc. 48 (1993), 347–350. http://dx.doi.org/10.1017/S0004972700015768
X. Ye, W. Huang and S. Shao, An Introduction to Topolgical Dynamics, Science Press, Bejing, 2008. [Chinese]
Abstract Views
Metrics powered by PLOS ALM
Esta revista se publica bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. Universitat Politècnica de València e-ISSN: 1989-4147 https://doi.org/10.4995/agt |