Extensions defined using bornologies
Submitted: 2013-07-31
|Accepted: 2013-07-31
|Published: 2013-07-31
Downloads
Keywords:
Boundedness, Bornology, Topological extension, B-extension
Supporting agencies:
Abstract:
References:
G. Beer, On metric boundedness structures, Set-Valued Anal. 7 (1999), 195–208. http://dx.doi.org/10.1023/A:1008720619545
G. Beer, On convergence to infinity, Monathsh. Math. 129 (2000), 267–280. http://dx.doi.org/10.1007/s006050050075
G. Beer, Embeddings of bornological universes, Set-Valued Anal. 16, no. 4 (2008), 477–488. http://dx.doi.org/10.1007/s11228-007-0068-2
A. Caterino, G. D. Faulkner, M. C. Vipera, Construction of compactifications using essential semilattice homomorphisms, Proc. Amer. Math. Soc. 116 (1992), 851–860. http://dx.doi.org/10.1090/S0002-9939-1992-1111215-7
A. Caterino and S. Guazzone, Extensions of unbounded topological spaces, Rend. Sem. Mat. Univ. Padova 100 (1998), 123–135.
A. Caterino, F. Panduri and M. C. Vipera, Boundedness, one-point extensions and B-extensions, Math. Slovaca. 58, no. 1 (2008), 101–114. http://dx.doi.org/10.2478/s12175-007-0058-8
R. E. Chandler and G. D. Faulkner, Singular compactifications: the order structure, Proc. Amer. Math. Soc. 100 (1987), 377–382. http://dx.doi.org/10.1090/S0002-9939-1987-0884483-2
R. Engelking, General Topology, Heldermann, Berlin, 1989.
L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, Princeton, 1960. http://dx.doi.org/10.1007/978-1-4615-7819-2
S. T. Hu, Boundedness in a topological space, J. Math. Pures Appl. 28 (1949), 287–320.
S. T. Hu, Introduction to general topology, Holden-Day inc., San Francisco, 1969.
M. C. Vipera, Some results on sequentially compact extensions, Comment. Math. Univ. Carolinae 39 (1998), 819–831.