Topological conditions for the representation of preorders by continuous utilities

E. Minguzzi

Abstract

We remove the Hausdorff condition from Levin's theorem on the representation of preorders by families of continuous utilities. We compare some alternative topological assumptions in a Levin's type theorem, and show that they are equivalent to a Polish space assumption.

Keywords

Preorder normality; Utilities; Preorder representations; k-spaces

Full Text:

PDF

References

E. Akin and J. Auslander, Generalized recurrence, compactifications and the Lyapunov topology, Studia Mathematica 201 (2010), 49–63. http://dx.doi.org/10.4064/sm201-1-4

R. F. Arens, A topology for spaces of transformations, Ann. of Math. 47 (1946), 480–495. http://dx.doi.org/10.2307/1969087

N. Bourbaki, Elements of Mathematics: General topology I, Reading: Addison-Wesley Publishing (1966).

D. S. Bridges and G. B. Mehta, Representations of preference orderings, vol. 442 of Lectures Notes in Economics and Mathematical Systems. Berlin: Springer-Verlag (1995).

A. Caterino, R. Ceppitelli and F. Maccarino, Continuous utility functions on submetrizable hemicompact k-spaces, Applied General Topology 10 (2009), 187–195.

O. Echi and S. Lazaar, Quasihomeomorphisms and lattice equivalent topological spaces, Applied General Topology 10 (2009), 227–237.

R. Engelking, General Topology, Berlin: Helderman Verlag (1989).

O. Evren and E. A. Ok, On the multi-utility representation of preference relations, J. Math. Econ. 47 (2011), 554–563. http://dx.doi.org/10.1016/j.jmateco.2011.07.003

S. T. Franklin and B. V. Smith Thomas, A survey of kω-spaces, Topology Proceedings 2 (1977), 111–124.

G. Herden and A. Pallack, On the continuous analogue of the Szpilrajn theorem I, Mathematical Social Sciences 43 (2002), 115–134. http://dx.doi.org/10.1016/S0165-4896(01)00077-4

Y. Kai-Wing, Quasi-homeomorphisms and lattice-equivalences of topological spaces, J. Austral. Math. Soc. 14 (1972), 41–44. http://dx.doi.org/10.1017/S1446788700009617

J. L. Kelley, General Topology, New York: Springer-Verlag (1955).

H.-P. A. Künzi and T. A. Richmond, Ti-ordered reflections, Applied General Topology 6 (2005), 207–216.

J. D. Lawson, Order and strongly sober compactifications, Oxford: Clarendon Press, vol. Topology and Category Theory in Computer Science, pages 171–206 (1991).

V. L. Levin, A continuous utility theorem for closed preorders on a σ-compact metrizable space, Soviet Math. Dokl. 28 (1983), 715–718.

E. Minguzzi, Time functions as utilities, Commun. Math. Phys. 298 (2010), 855–868. http://dx.doi.org/10.1007/s00220-010-1048-1

E. Minguzzi, Normally preordered spaces and utilities, Order (2011), http://dx.doi.org/10.1007/s11083-011-9230-4

L. Nachbin, Topology and order, Princeton: D. Van Nostrand Company, Inc. (1965).

L. A. Steen and J. A. Seebach, Jr., Counterexamples in topology, New York: Holt, Rinehart and Winston, Inc. (1970).

N. E. Steenrod, A convenient category of topological spaces, Michigan Math. J. 14 (1967), 133–152. http://dx.doi.org/10.1307/mmj/1028999711

S. Willard, General topology, Reading: Addison-Wesley Publishing Company (1970).

Abstract Views

1122
Metrics Loading ...

Metrics powered by PLOS ALM




Esta revista se publica bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Universitat Politècnica de València

e-ISSN: 1989-4147   https://doi.org/10.4995/agt