The Zariski topology on the graded primary spectrum of a graded module over a graded commutative ring

Saif Salam

https://orcid.org/0000-0002-1330-2556

Jordan

Jordan University of Science and Technology

Department of Mathematics and Statistics

Khaldoun Al-Zoubi

https://orcid.org/0000-0001-6082-4480

Jordan

Jordan University of Science and Technology

Department of Mathematics and Statistics

|

Accepted: 2022-05-29

|

Published: 2022-10-03

DOI: https://doi.org/10.4995/agt.2022.16332
Funding Data

Downloads

Keywords:

graded primary submodules, graded primary spectrum, Zariski topology

Supporting agencies:

This research was not funded

Abstract:

Let R be a G-graded ring and M be a G-graded R-module. We define the graded primary spectrum of M, denoted by PSG(M), to be the set of all graded primary submodules Q of M such that (GrM(Q) :RM) = Gr((Q:RM)). In this paper, we define a topology on PSG(M) having the Zariski topology on the graded prime spectrum SpecG(M) as a subspace topology, and investigate several topological properties of this topological space.

Show more Show less

References:

K. Al-Zoubi, The graded primary radical of a graded submodules, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 1 (2016), 395-402.

K. Al-Zoubi, I. Jaradat and M. Al-Dolat, On graded P-compactly packed modules, Open Mathematics 13, no. 1 (2015), 487-492. https://doi.org/10.1515/math-2015-0045

S. E. Atani, On graded prime submodules, Chiang Mai J. Sci. 33, no. 1 (2006), 3-7.

S. E. Atani and F. Farzalipour, Notes on the graded prime submodules, Int. Math. Forum. 1, no. 38 (2006), 1871-1880. https://doi.org/10.12988/imf.2006.06162

S. E. Atani and F. Farzalipour, On graded secondary modules, Turk. J. Math. 31 (2007), 371-378.

N. Bourbaki, Commutative Algebra. Chapter 1-7. Springer-Verlag, Berlin, 1989.

A. Y. Darani, Topology on $Spec_{g}(M),$ Buletinul Academiei De Stiinte 3 (67) (2011), 45-53.

J. Escoriza and B. Torrecillas, Multiplication objects in commutative Grothendieck categories, Comm. in Algebra 26, no. 6 (1998), 1867-1883. https://doi.org/10.1080/00927879808826244

M. Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc. 142 (1969), 43-60. https://doi.org/10.1090/S0002-9947-1969-0251026-X

M. Jaradat and K. Al-Zoubi, The Quasi-Zariski topology on the graded quasi-primary spectrum of a graded module over a graded commutative ring, preprint.

C. Nastasescu and V. F. Oystaeyen, Graded and filtered rings and modules, Lecture Notes in Mathematics Vol. 758, Springer-Verlag, Berlin, 2004.

C. Nastasescu and F. Van Oystaeyen, Graded ring theory, Mathematical Library 28, North Holand, Amsterdam, 1982.

C. Nastasescu and V. F. Oystaeyen, Methods of Graded Rings, Lecture Notes in Math., Vol. 1836, Berlin-Heidelberg: Springer-Verlag, 2004. https://doi.org/10.1007/b94904

N. A. Ozkirisci, K. H. Oral and U. Tekir, Graded prime spectrum of a graded module, Iran. J. Sci. Technol. 37A3 (2013), 411-420.

K. H. Oral, U. Tekir and A. G. Agargun, On graded prime and primary submodules, Turk. J. Math. 35 (2011), 159-167. https://doi.org/10.3906/mat-0904-11

M. Refai, On properties of G-spec(R), Sci. Math. Jpn. 53, no. 3 (2001), 411-415. https://doi.org/10.1186/BF03353250

M. Refai and K. Al-Zoubi, On graded primary ideals, Turk. J. Math. 28 (2004), 217-229.

M. Refai, M. Hailat and S. Obiedat, Graded radicals on graded prime spectra, Far East J. of Math. Sci., part I (2000), 59-73.

Show more Show less