The Zariski topology on the graded primary spectrum of a graded module over a graded commutative ring
DOI:
https://doi.org/10.4995/agt.2022.16332Keywords:
graded primary submodules, graded primary spectrum, Zariski topologyAbstract
Let R be a G-graded ring and M be a G-graded R-module. We define the graded primary spectrum of M, denoted by PSG(M), to be the set of all graded primary submodules Q of M such that (GrM(Q) :RM) = Gr((Q:RM)). In this paper, we define a topology on PSG(M) having the Zariski topology on the graded prime spectrum SpecG(M) as a subspace topology, and investigate several topological properties of this topological space.
Downloads
References
K. Al-Zoubi, The graded primary radical of a graded submodules, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 1 (2016), 395-402.
K. Al-Zoubi, I. Jaradat and M. Al-Dolat, On graded P-compactly packed modules, Open Mathematics 13, no. 1 (2015), 487-492. https://doi.org/10.1515/math-2015-0045
S. E. Atani, On graded prime submodules, Chiang Mai J. Sci. 33, no. 1 (2006), 3-7.
S. E. Atani and F. Farzalipour, Notes on the graded prime submodules, Int. Math. Forum. 1, no. 38 (2006), 1871-1880. https://doi.org/10.12988/imf.2006.06162
S. E. Atani and F. Farzalipour, On graded secondary modules, Turk. J. Math. 31 (2007), 371-378.
N. Bourbaki, Commutative Algebra. Chapter 1-7. Springer-Verlag, Berlin, 1989.
A. Y. Darani, Topology on $Spec_{g}(M),$ Buletinul Academiei De Stiinte 3 (67) (2011), 45-53.
J. Escoriza and B. Torrecillas, Multiplication objects in commutative Grothendieck categories, Comm. in Algebra 26, no. 6 (1998), 1867-1883. https://doi.org/10.1080/00927879808826244
M. Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc. 142 (1969), 43-60. https://doi.org/10.1090/S0002-9947-1969-0251026-X
M. Jaradat and K. Al-Zoubi, The Quasi-Zariski topology on the graded quasi-primary spectrum of a graded module over a graded commutative ring, preprint.
C. Nastasescu and V. F. Oystaeyen, Graded and filtered rings and modules, Lecture Notes in Mathematics Vol. 758, Springer-Verlag, Berlin, 2004.
C. Nastasescu and F. Van Oystaeyen, Graded ring theory, Mathematical Library 28, North Holand, Amsterdam, 1982.
C. Nastasescu and V. F. Oystaeyen, Methods of Graded Rings, Lecture Notes in Math., Vol. 1836, Berlin-Heidelberg: Springer-Verlag, 2004. https://doi.org/10.1007/b94904
N. A. Ozkirisci, K. H. Oral and U. Tekir, Graded prime spectrum of a graded module, Iran. J. Sci. Technol. 37A3 (2013), 411-420.
K. H. Oral, U. Tekir and A. G. Agargun, On graded prime and primary submodules, Turk. J. Math. 35 (2011), 159-167. https://doi.org/10.3906/mat-0904-11
M. Refai, On properties of G-spec(R), Sci. Math. Jpn. 53, no. 3 (2001), 411-415. https://doi.org/10.1186/BF03353250
M. Refai and K. Al-Zoubi, On graded primary ideals, Turk. J. Math. 28 (2004), 217-229.
M. Refai, M. Hailat and S. Obiedat, Graded radicals on graded prime spectra, Far East J. of Math. Sci., part I (2000), 59-73.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Applied General Topology
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike- 4.0 International License.