Supersymmetry and the Hopf fibration

Simon Davis

Abstract

The Serre spectral sequence of the Hopf fibration S15 S7→S8 is computed. It is used in a study of supersymmetry and actions based on this fibration.

Keywords

Sspectral sequence; Hopf fibration; Supersymmetry

Full Text:

PDF

References

L. Castellani, R. D’Auria and P. Fre, SU(3) × SU(2) × U(1) from D = 11 Supergravity, Nucl. Phys. B239 (1984), 610–652. http://dx.doi.org/10.1016/0550-3213(84)90265-7

A. F. Zerrouk, Standard Model Gauge Group and Realistic Fermions from Most Symmetric Coset Space Mklm, Il Nuovo Cim. B106 (1991), 457–500.

S. Davis, The Coset Space of the Unified Field Theory, RFSC-07-01.

S. Davis, A Constraint on the Geometry of Yang-Mills Theory, J. Geom. Phys. 4 (1987), 405–415. http://dx.doi.org/10.1016/0393-0440(87)90021-0

M. Cederwall, Introduction to Division Algebras, Sphere Algebras and Twistors, Talk presented at the Theoretical Physics Network Meeting at NORDITA, Copenhagen, September, 1993, hep-th/9310115.

G. Landi and G. Marmo, Extensions of Lie Superalgebras and Supersymmetric Abelian Gauge Fields, Phys. Lett. B193 (1987), 61–66. http://dx.doi.org/10.1016/0370-2693(87)90456-4

J.-P. Serre, Homologie Singuliere des Espaces, Ann. Math. Ser. 2 54 (1951), 425–505.

R. S. Ward, Hopf Solitons on S3 and R3, Nonlinearity 12 (1999), 241–246. http://dx.doi.org/10.1088/0951-7715/12/2/005

W. Hurewicz, Beitr¨age zur Topologie der Deformationen. IV., Neder. Akad. Wetensch. 39 (1936), 215–224.

W. Hurewicz and N. Steenrod, Homotopy Relations in Fibre Spaces, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 60–64. http://dx.doi.org/10.1073/pnas.27.1.60 PMid:16588428 PMCid:PMC1078274

H. Toda, Composition Methods in Homotopy Groups of Spheres, Ann. of Math. Studies no. 49, Princeton University Press, Princeton, 1962.

B. Grossman, T. W. Kephart and J. D. Stasheff, Solutions to Yang-Mills Field Equations in Eight Dimensions and the Last Hopf Map, Commun. Math. Phys. 96 (1984), 431–437. http://dx.doi.org/10.1007/BF01212529

G. Landi, The Natural Spinor Connection on S8 is a Gauge Field, Lett. Math. Phys. 11 (1986), 171–175. http://dx.doi.org/10.1007/BF00398429

A. P. Balachandran, G. Marmo, B.-S. Skagerstam and A. Stern, Gauge Symmetries and Fibre Bundles, Lect. Notes in Physics 188, Springer-Verlag, Berlin, 1983.

K. Hasebe and Y. Kimura, Fuzzy Supersphere and Supermonopole, Nucl. Phys. B709 (2005), 94–114. http://dx.doi.org/10.1016/j.nuclphysb.2004.11.040

H. Grosse and G. Reiter, The Fuzzy Supersphere, J. Geom. Phys. 28 (1998), 349–383. http://dx.doi.org/10.1016/S0393-0440(98)00023-0

D. Leites, The Index Theorem for Homogeneous Differential Operators on Supermanifolds, math-ph/0202024.

M. Cederwall, Octonionic Particles and the S7 Symmetry, J. Math. Phys. 33 (1992), 388–393. http://dx.doi.org/10.1063/1.529919

J. A. Dixon, Calculation of BRS Cohomology with Spectral Sequences, Commun. Math. Phys. 139 (1991), 495–526. http://dx.doi.org/10.1007/BF02101877

Abstract Views

1427
Metrics Loading ...

Metrics powered by PLOS ALM




Esta revista se publica bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Universitat Politècnica de València

e-ISSN: 1989-4147   https://doi.org/10.4995/agt