Strongly path-confluent mappings
Submitted: 2013-07-26
|Accepted: 2013-07-26
|Downloads
Keywords:
Continuum, Connectedness, Components, Path-components, Quasi-components, Confluent maps, Path-confluent maps, Quasi- confluent maps, Strongly confluent maps, Strongly path-confluent maps
Supporting agencies:
Abstract:
References:
J. J. Charatonik, Confluent mappings and unicoherence of continua, Fund. Math. 56 (1964), 213–220.
J. J. Charatonik, Component restriction property for classes of mappings, Mathematica Pannonica 14, no. 1. (2003), 135–143.
J. Grispolakis, A. Lelek and E. D. Tymchatyn, Connected subsets of nitely Suslinian continua, Colloq. Math. 35 (1976), 31–44.
J. Grispolakis, Confluent and related mappings defined by means of quasi-components, Can. J. Math. 30, no. 1, (1978), 112–132. http://dx.doi.org/10.4153/CJM-1978-010-x
F. C. Helen, Introduction to General topology, Boston: University of Massachusetts, 1968.
K. Kuratowski, Topology, volume I, PWN - Polish Scientific Publishers, Academic Press, Warsaw, New York and London, 1966.
K. Kuratowski, Topology, vol. 2, Academic press and PWN, 1968.
A. Lelek, Ensembles-connexes et le thoereme de Gehman, Fund. Math. 47 (1959), 265–276.
A. Qahis and M. S. M. Noorani, On Quasi-!-Confluent Mappings, Internat. J. Math. Math. Sci. 2011, Article ID 270704, 9 pages.
A. Qahis and M. S. M. Noorani, A strong form of confluent mappings, Questions and Answers in General Topology 30, no. 2 (2012), 139–152.
G. T. Whyburn, Analytic topology, Amer. Math. Soc. Colloq. Publ.28, Providence, 1942.