Range-preserving AE(0)-spaces
Submitted: 2013-07-25
|Accepted: 2013-07-25
|Published: 2013-07-25
Downloads
Keywords:
Absolute extensor, Retraction, Zero-dimensional space, Range- preserving function, Dugundji space, Dyadic space, Countable chain condition
Supporting agencies:
Abstract:
References:
A. B laszczyk, Compactness, in: Encyclopedia of General Topology (K. Hart, J. Nagata, and J. Vaughan, eds.), pp. 169-173. Elsevier, Amsterdam, 2004.
B. Efimov, Dyadic bicompacta, Soviet Math. Doklady 4 (1963), 496-500, Russian original in: Doklady Akad. Nauk SSSR 149 (1963), 1011-1014.
R. Engelking, Cartesian products and dyadic spaces, Fund. Math. 57 (1965), 287-304. https://doi.org/10.4064/fm-57-3-287-304
Ryszard Engelking, General Topology, Heldermann Verlag, Berlin, 1989.
A. S. Esenin-Vol'pin, On the relation between the local and integral weight in dyadic bicompacta, Doklady Akad. Nauk SSSR N.S. 68 (1949), 441-444. [In Russian.]
L. Gillman and M.r Jerison, Rings of Continuous Functions, D. Van Nostrand Co., New York, 1960. https://doi.org/10.1007/978-1-4615-7819-2
G. Gruenhage, Generalized metric spaces, in: Handbook of Set-theoretic Topology (Kenneth Kunen and Jerry E. Vaughan, eds.), pp. 423-501. North-Holland, Amsterdam, 1984. https://doi.org/10.1016/B978-0-444-86580-9.50013-6
A. W. Hager and L. C. Robertson, Representing and ringifying a Riesz space, in: Symposia Mathematica Vol. XXI, INDAM, Rome, 1975, pp. 411-431. Academic Press, London, 1977.
A. W. Hager, J. Martinez and C. Monaco, Some basics of the category of Archimedean â„“-groups with strong unit. Manuscript in preparation.
R. Haydon, On a problem of Pelczynski: Milutin spaces, Dugunjdi spaces, and AE(0 − dim), Studia Math. 52 (1974), 23-31. https://doi.org/10.4064/sm-52-1-23-31
B. Hoffmann, A surjective characterization of Dugundji spaces, Proc. Amer. Math. Soc. 76 (1979), 151-156. https://doi.org/10.1090/S0002-9939-1979-0534408-X
J. R. Isbell, Uniform Spaces, Math. Surveys #12, American Mathematical Society, Providence, Rhode Island, 1964. https://doi.org/10.1090/surv/012
S. Koppelberg, Projective Boolen algebras, in: Handbook of Boolean Algebras (J. Donald Monk and Robert Bennett, eds.), Chapter 20. North-Holland Publ. Co., Amsterdam, 1989.
A. Pelczynski, Linear extensions, linear averagings, and their applications to linear topological classification of spaces of continuous functions, Dissertationes Math. 58 (1968), 92 pages. Rozprawy Mat. Polish Scientific Publishers, Warszawa, 1958.
W. Sierpinski, Sur les projections des ensembles complémentaire aux ensembles (a), Fund. Math. 11 (1928), 117-122. https://doi.org/10.4064/fm-11-1-117-122



