On functions between generalized topological spaces

Authors

  • Sadik Bayhan Mehmet Akif Ersoy University
  • A. Kanibir Hacettepe University
  • Ivan L. Reilly University of Auckland

DOI:

https://doi.org/10.4995/agt.2013.1588

Keywords:

Generalized topology, Generalized continuity, change of generalized topology, Generalized connectedness

Abstract

This paper investigates generalized topological spaces and functions between such spaces from the perspective of change of generalized topology. In particular, it considers the preservation of generalized connectedness properties by various classes of functions between
generalized topological spaces.

Downloads

Download data is not yet available.

References

S.-Z. Bai and Y.-P. Zuo, On $g$ - $alpha$-irresolute functions , Acta Math. Hungar. 130, no. 4 (2011), 382-389. http://dx.doi.org/10.1007/s10474-010-0014-x

S. G. Crossley and S. K. Hildebrand, Semi-topological properties, Fund. Math. 74 (1972), 233-254.

A .Császár, Generalized open sets in generalized topologies , Acta Math. Hungar., 106 (1-2) (2005), 53-66. http://dx.doi.org/10.1007/s10474-005-0005-5

Császárr, Generalized topology, generalized continuity, Acta Math. Hungar., 96 (2002), 351-357. http://dx.doi.org/10.1023/A:1019713018007

Császár, $gamma $ -connected sets , Acta Math. Hungar., 101 (2003), 273-279. http://dx.doi.org/10.1023/B:AMHU.0000004939.57085.9e

Császár, Normal generalized topologies , Acta Math. Hungar., 115 (4) (2007), 309-313. http://dx.doi.org/10.1007/s10474-007-5249-9

Császárr, $delta $ - and $theta $-modifications of generalized topologies , Acta Math. Hungar., 120 (2008), 275-279. http://dx.doi.org/10.1007/s10474-007-7136-9

D. B. Gauld, S. Greenwood and I. L. Reilly, On variations of continuity, Topology Atlas , Invited Contributions 4 (1) (1999), 1-54, http://at.yorku.ca/t/a/i/c/32.htm.

D. B. Gauld, M. Mrsevic , I. L. Reilly and M. K. Vamanamurthy, Continuity properties of functions , Colloquia Math. Soc. Janos Bolyai, 41 (1983), 311-322.

N. Levine, Semi-open sets and semicontinuity in topological spaces , Amer. Math. Monthly, 70 (1963), 36-41. http://dx.doi.org/10.2307/2312781

Mashhour, M. Abd. El-Monsef and S. El-Deeb, On precontinuous and weak precontinuous mappings , Proc. Math. Phys. Soc. Egypt 53 (1982), 47-53.

W. K. Min, Almost continuity on generalized topological spaces, Acta Math. Hungar., 125 (1-2) (2009), 121-125. http://dx.doi.org/10.1007/s10474-009-8230-y

W. K. Min, A note on $theta (g,g^{prime )$-continuity in generalized topological spaces , Acta Math. Hungar., 125 (4) (2009), 387-393. http://dx.doi.org/10.1007/s10474-009-9075-0

W. K. Min, $(delta ,delta ^{prime )$ -continuity on generalized topological spaces , Acta Math. Hungar., 129 (4) (2010), 350-356. http://dx.doi.org/10.1007/s10474-010-0036-4

M. Mrsevic , I. L. Reilly and M. K. Vamanamurthy, On semi-regularization topologies , J. Austral. Math. Soc. (Series A) 38 (1985), 40-54. http://dx.doi.org/10.1017/S1446788700022588

L. Reilly and M. K. Vamanamurthy, On $alpha $ -continuity in topological spaces , Acta Math. Hungar., 45 (1985), 27-32. http://dx.doi.org/10.1007/BF01955019

-X. Shen, A note on generalized connectedness , Acta Math. Hungar., 122 (3) (2009), 231-235. http://dx.doi.org/10.1007/s10474-008-8009-6

N. V. Velicko, H-closed topological spaces , Mat. Sbornik 70 (112) (1966), 98-112.

Downloads

Published

2013-07-25

How to Cite

[1]
S. Bayhan, A. Kanibir, and I. L. Reilly, “On functions between generalized topological spaces”, Appl. Gen. Topol., vol. 14, no. 2, pp. 195–203, Jul. 2013.

Issue

Section

Regular Articles