The combinatorial derivation
DOI:
https://doi.org/10.4995/agt.2013.1587Keywords:
Combinatorial derivation, $\Delta$-trajectories, large, small and thin subsets of groups, partitions of groups, Stone-\v{C}ech compactification of a groupAbstract
Let $G$ be a group, $\mathcal{P}_G$ be the family of all subsets of $G$. For a subset $A\subseteq G$, we put$\Delta(A)=\{g\in G:|gA\cap A|=\infty\}$. The mapping $\Delta:\mathcal{P}_G\rightarrow\mathcal{P}_G$, $A\mapsto\Delta(A)$, is called a combinatorial derivation and can be considered as an analogue of the topological derivation $d:\mathcal{P}_X\rightarrow\mathcal{P}_X$, $A\mapsto A^d$, where $X$ is a topological space and $A^d$ is the set of all limit points of $A$. Content: elementary properties, thin and almost thin subsets, partitions, inverse construction and $\Delta$-trajectories, $\Delta$ and $d$.
Downloads
References
T. Banakh and N. Lyaskovska, Weakly P-small not P-small subsets in groups, Intern. J. Algebra Computations, 18 (2008), 1-6. http://dx.doi.org/10.1142/S0218196708004263
M. Filali and I. Protasov, Ultrafilters and Topologies on Groups, Math. Stud. Monorg. Ser., Vol. 13, VNTL Publishers, Lviv, 2010.
V. Gavrylkiv, Algebraic-topological structure on superextensions, Dissertation, Lviv, 2009.
N. Hindman and D. Strauss, Algebra in the Stone-Cech compactification, Walter de Grueter, Berlin, New York, 1998. http://dx.doi.org/10.1515/9783110809220
The Kourovka Notebook, Novosibirsk, Institute of Math., 1995.
K. Kuratowski, Topology, Vol. 1, Academic Press, New York and London, PWN, Warszawa, 1969.
Ie. Lutsenko, Thin systems of generators of groups, Algebra and Discrete Math., 9 (2010), 108-114.
Ie. Lutsenko and I. V. Protasov, Sparse, thin and other subsets of groups, Intern. J. Algebra Computation, 19 (2009), 491-510. http://dx.doi.org/10.1142/S0218196709005135
I. V. Protasov, Selective survey on Subset Combinatorics of Groups, J. Math. Sciences, 174 (2011), 486-514. http://dx.doi.org/10.1007/s10958-011-0314-x
I. Protasov and T. Banakh, Ball Structure and Colorings of Groups and Graphs, Math. Stud. Monorg. Ser., Vol. 11, VNTL Publishers, Lviv, 2003.
T. Tao and V. Vu, Additive Combinatorics, Cambridge University Press, 2006. http://dx.doi.org/10.1017/CBO9780511755149
Downloads
Published
How to Cite
Issue
Section
License
This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike- 4.0 International License.