The combinatorial derivation

Igor V. Protasov


Let $G$ be a group, $\mathcal{P}_G$ be the family of all subsets of $G$. For a subset $A\subseteq G$, we put
$\Delta(A)=\{g\in G:|gA\cap A|=\infty\}$. The mapping $\Delta:\mathcal{P}_G\rightarrow\mathcal{P}_G$, $A\mapsto\Delta(A)$, is called a combinatorial derivation and can be considered as an analogue of the topological derivation $d:\mathcal{P}_X\rightarrow\mathcal{P}_X$, $A\mapsto A^d$, where $X$ is a topological space and $A^d$ is the set of all limit points of $A$. Content: elementary properties, thin and almost thin subsets, partitions, inverse construction and $\Delta$-trajectories,  $\Delta$ and $d$.


Combinatorial derivation; $\Delta$-trajectories; large, small and thin subsets of groups; partitions of groups; Stone-\v{C}ech compactification of a group

Full Text:



T. Banakh and N. Lyaskovska, Weakly P-small not P-small subsets in groups, Intern. J. Algebra Computations, 18 (2008), 1-6.

M. Filali and I. Protasov, Ultrafilters and Topologies on Groups, Math. Stud. Monorg. Ser., Vol. 13, VNTL Publishers, Lviv, 2010.

V. Gavrylkiv, Algebraic-topological structure on superextensions, Dissertation, Lviv, 2009.

N. Hindman and D. Strauss, Algebra in the Stone-Cech compactification, Walter de Grueter, Berlin, New York, 1998.

The Kourovka Notebook, Novosibirsk, Institute of Math., 1995.

K. Kuratowski, Topology, Vol. 1, Academic Press, New York and London, PWN, Warszawa, 1969.

Ie. Lutsenko, Thin systems of generators of groups, Algebra and Discrete Math., 9 (2010), 108-114.

Ie. Lutsenko and I. V. Protasov, Sparse, thin and other subsets of groups, Intern. J. Algebra Computation, 19 (2009), 491-510.

I. V. Protasov, Selective survey on Subset Combinatorics of Groups, J. Math. Sciences, 174 (2011), 486-514.

I. Protasov and T. Banakh, Ball Structure and Colorings of Groups and Graphs, Math. Stud. Monorg. Ser., Vol. 11, VNTL Publishers, Lviv, 2003.

T. Tao and V. Vu, Additive Combinatorics, Cambridge University Press, 2006.

Abstract Views

Metrics Loading ...

Metrics powered by PLOS ALM


Cited-By (articles included in Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. Asymptotic structures of cardinals
Oleksandr Petrenko, Igor V. Protasov, Sergii Slobodianiuk
Applied General Topology  vol: 15  issue: 2  first page: 137  year: 2014  
doi: 10.4995/agt.2014.3109

Esta revista se publica bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Universitat Politècnica de València

e-ISSN: 1989-4147