Topological transitivity of the normalized maps induced by linear operators
Submitted: 2021-05-13
|Accepted: 2021-12-28
|Published: 2022-04-01
Copyright (c) 2022 Applied General Topology

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Downloads
Keywords:
topological transitivity, supercyclicity, projective transformation, linear transformation, cone transitivity
Supporting agencies:
NBHM-DAE (Government of India) Ref. No. 2/39(2)/2016/NBHM/R & D-II/11397
Abstract:
References:
J. M. Aarts and F. G. M. Daalderop, Chaotic homeomorphisms on manifolds, Topology and its Applications 96 (1999), 93-96. https://doi.org/10.1016/S0166-8641(98)00041-8
F. Bayart and E. Matheron, Dynamics of Linear Operators, Cambridge University Press (2009), Cambridge. https://doi.org/10.1017/CBO9780511581113
L. S. Block and W. A. Coppel, Dynamics in one dimension, Lecture Notes in Mathematics, 1513, Springer-Verlag (1992), Berlin. https://doi.org/10.1007/BFb0084762
S. G. Dani, Dynamical properties of linear and projective transformation and their applications, Indian Journal of Pure and Applied Mathematics 35 (2004), 1365-1394.
M. Fabian, P. Habala, P. Hájek, V. Montesinos and V. Zizler, Banach Space Theory: The Basis for Linear and Nonlinear Analysis, CMS Books in Mathematics, Springer (2011), New York. https://doi.org/10.1007/978-1-4419-7515-7
K.-G. Grosse-Erdmann and A. Peris Manguillot, Linear Chaos, Universitext, Springer (2011), London. https://doi.org/10.1007/978-1-4471-2170-1
G. Herzog, On linear operators having supercyclic vectors, Studia Mathematica 103 (1992), 295-298. https://doi.org/10.4064/sm-103-3-295-298
N. H. Kuiper, Topological conjugacy of real projective transformation, Topology 15 (1976), 13-22. https://doi.org/10.1016/0040-9383(76)90046-X
R. Shah, A. Nagar and S. Shridharan (Ed. by), Elements of Dynamical Systems, Hindusthan Publishers (2020), Delhi.



