Boyd-Wong contractions in F-metric spaces and applications
DOI:
https://doi.org/10.4995/agt.2022.15356Keywords:
fractional differential equation, Boyd-Wong fixed point theorem, F-metric spaceAbstract
The main aim of this paper is to study the Boyd-Wong type fixed point result in the F-metric context and apply it to obtain some existence and uniqueness criteria of solution(s) to a second order initial value problem and a Caputo fractional differential equation. We substantiate our obtained result by finding a suitable non-trivial example.
Downloads
References
I. Altun, M. Aslantas and H. Sahin, KW-type nonlinear contractions and their best proximity points, Numerical Functional Analysis and Optimization 42, no. 8 (2021), 935-954. https://doi.org/10.1080/01630563.2021.1933526
T. V. An, N. V. Dung and V. T. L. Hang, A new approach to fixed point theorems on G-metric spaces, Topology Appl. 160, no. 12 (2013), 1486-1493. https://doi.org/10.1016/j.topol.2013.05.027
M. Aslantas, Best proximity point theorems for proximal b-cyclic contractions on b-metric spaces, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70, no. 1 (2021), 483-496. https://doi.org/10.31801/cfsuasmas.780729
H. Aydi, M. Jleli and B. Samet, On the absence of global solution for some q-difference inequalities, Adv. Difference Equ. 2019, no. 1 (2019), 1-9. https://doi.org/10.1186/s13662-019-1985-8
S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math. 3 (1922), 133-181. https://doi.org/10.4064/fm-3-1-133-181
A. Bera, H. Garai, B. Damjanovic and A. Chanda, Some interesting results on $mathcal{F}$-metric spaces, Filomat 33, no. 10 (2019), 3257-3268. https://doi.org/10.2298/FIL1910257B
A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen 57 (2000), 31-37.
D. W. Boyd and J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20, no. 2 (1969), 458-464. https://doi.org/10.1090/S0002-9939-1969-0239559-9
A. Chanda, S. Mondal, L. K. Dey and S. Karmakar, ${C}^*$-algebra-valued contractive mappings with its application to integral equations, Indian J. Math. 59, no. 1 (2017), 107-124.
S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Univ. Osstrav. 1, no. 1 (1993), 5-11.
S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Semin. Mat. Fis. Univ. Modena 46 (1988), 263-276.
K. Diethelm, N. J. Ford and A. D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynam. 29 (2002), 3-22. https://doi.org/10.1023/A:1016592219341
M. F. Elettreby, A. A. Al-Raezah and T. Nabil, Fractional order model of two-prey one-predator system, Math. Probl. Eng. 12 (2017), 1-13. https://doi.org/10.1155/2017/6714538
H. Garai, L. K. Dey and A. Chanda, Positive solutions to a fractional thermostat model in Banach spaces via fixed point results, J. Fixed Point Theory Appl. 20, no. 3 (2018), 1-24. https://doi.org/10.1007/s11784-018-0584-8
M. Jleli and B. Samet, On a new generalization of metric spaces, J. Fixed Point Theory Appl. 20, no. 3 (2018), 1-20. https://doi.org/10.1007/s11784-018-0606-6
M. Jleli and B. Samet, A generalized metric space and related fixed point theorems, Fixed Point Theory Appl. 2015, no. 1 (2015), 1-14. https://doi.org/10.1186/s13663-015-0312-7
M. A. Khamsi and N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal. 73, no. 9 (2010), 3123-3129. https://doi.org/10.1016/j.na.2010.06.084
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier (2006).
Z. D. Mitrović, A note on the results of Suzuki, Miculescu and Mihail, J. Fixed Point Theory Appl. 21, no. 1 (2019), 1-4. https://doi.org/10.1007/s11784-019-0663-5
Z. D. Mitrović and S. Radenović, The Banach and Reich contractions in $b_v(s)$-metric spaces. J. Fixed Point Theory Appl. 19, no. 4 (2017), 3087-3095. https://doi.org/10.1007/s11784-017-0469-2
Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7, no. 2 (2006), 289-297.
H. Sahin, Existence and uniqueness results for nonlinear fractional differential equations via new Q-function, Adv. Oper. Theory 7, no. 1 (2022), 1-21. https://doi.org/10.1007/s43036-021-00168-9
K. Sawangsup and W. Sintunavarat, On solving nonlinear matrix equations in terms of b-simulation functions in b-metric spaces with numerical solutions, Comput. Appl. Math. 37 (2018), 5829-5843. https://doi.org/10.1007/s40314-018-0664-9
S. Som, A. Bera and L. K. Dey, Some remarks on the metrizability of $mathcal{F}$-metric spaces, J. Fixed Point Theory Appl. 22, no. 1 (2020), 1-7. https://doi.org/10.1007/s11784-019-0753-4
O. Yamaod, W. Sintunavarat, On new homotopy results via a generalize extended simulation function in b-metric spaces, J. Nonlinear Convex Anal. 20, no. 10 (2019), 2225-2238.
O. Yamaod and W. Sintunavarat, Discussion of hybrid JS-contractions in b-metric spaces with applications to the existence of solution for nonlinear integral equations, Fixed Point Theory 22, no. 2 (2021), 899-912. https://doi.org/10.24193/fpt-ro.2021.2.59
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Applied General Topology
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike- 4.0 International License.
Funding data
-
National Research Council of Thailand
Grant numbers N41A640092 -
Council of Scientific and Industrial Research, India
Grant numbers 25(0285)/18/EMR-II