Further aspects of I K-convergence in topological spaces

Ankur Sharmah

India

Tezpur University

Department of Mathematical Sciences

Debajit Hazarika

India

Tezpur University

Professor, Department of Mathematical Sciences

Department of Mathematical Sciences

|

Accepted: 2021-03-26

|

Published: 2021-10-01

DOI: https://doi.org/10.4995/agt.2021.14868
Funding Data

Downloads

Keywords:

I-convergence, I K-convergence, I K∗ -convergence, I K-sequential space, I K-cluster point

Supporting agencies:

University Grants Comission (UGC) research fellowship vide UGCRef. No.

1115/(CSIR-UGC NET DEC. 2017)

India

Abstract:

In this paper, we obtain some results on the relationships between different ideal convergence modes namely, I K, I K∗ , I, K, I ∪ K and (I ∪K) ∗ . We introduce a topological space namely I K-sequential space and show that the class of I K-sequential spaces contain the sequential spaces. Further I K-notions of cluster points and limit points of a function are also introduced here. For a given sequence in a topological space X, we characterize the set of I K-cluster points of the sequence as closed subsets of X.
Show more Show less

References:

A. K. Banerjee and M. Paul, A note on IK and IK∗-convergence in topological spaces, arXiv:1807.11772v1 [math.GN], 2018.

B. K. Lahiri and P. Das, I and I⋆-convergence of nets, Real Anal. Exchange 33 (2007), 431-442. https://doi.org/10.14321/realanalexch.33.2.0431

B. K. Lahiri and P. Das, I and I⋆-convergence in topological spaces, Math. Bohemica 130 (2005), 153-160. https://doi.org/10.21136/MB.2005.134133

H. Fast, Sur la convergence statistique, Colloq. Math, 2(1951), 241-244. https://doi.org/10.4064/cm-2-3-4-241-244

K. P. Hart, J. Nagata and J. E. Vaughan. Encyclopedia of General Topology, Elsevier Science Publications, Amsterdam-Netherlands, 2004.

M. Macaj and M. Sleziak, IK-convergence, Real Anal. Exchange 36 (2011), 177-194. https://doi.org/10.14321/realanalexch.36.1.0177

P. Das, M. Sleziak and V. Tomac, IK-Cauchy functions, Topology Appl. 173 (2014), 9-27. https://doi.org/10.1016/j.topol.2014.05.008

P. Das, S. Dasgupta, S. Glab and M. Bienias, Certain aspects of ideal convergence in topological spaces, Topology Appl. 275 (2020), 107005. https://doi.org/10.1016/j.topol.2019.107005

P. Das, S. Sengupta, J and Supina, IK-convergence of sequence of functions, Math. Slovaca 69, no. 5(2019), 1137-1148. https://doi.org/10.1515/ms-2017-0296

P. Halmos and S. Givant, Introduction to Boolean Algebras, Undergraduate Texts in Mathematics, Springer, New York, 2009. https://doi.org/10.1007/978-0-387-68436-9

P. Kostyrko, T. Salat and W. Wilczynski, I-convergence, Real Anal. Exchange 26 (2001), 669-685. https://doi.org/10.2307/44154069

S. K. Pal, I-sequential topological spaces, Appl. Math. E-Notes 14 (2014), 236-241.

X. Zhou, L. Liu and L. Shou, On topological space defined by I-convergence, Bull. Iranian Math. Soc. 46 (2020), 675-692. https://doi.org/10.1007/s41980-019-00284-6

Show more Show less