From interpolative contractive mappings to generalized Ciric-quasi contraction mappings

Authors

  • Kushal Roy University of Burdwan
  • Sayantan Panja University of Burdwan

DOI:

https://doi.org/10.4995/agt.2021.14045

Keywords:

fixed point, restricted Ciric-quasi contraction mapping, interpolative strictly contractive type mapping, T-orbitally compact metric space

Abstract

In this article we consider a restricted version of Ciric-quasi contraction mapping for showing that this mapping generalizes several known interpolative type contractive mappings. Also here we introduce the concept of interpolative strictly contractive type mapping T and prove a fixed point theorem for such mapping over a T-orbitally compact metric space. Some examples are given in support of our established results. Finally we give an observation regarding (λ, α, β)-interpolative Kannan contractions introduced by Gaba et al.

Downloads

Download data is not yet available.

Author Biographies

Kushal Roy, University of Burdwan

Department of Mathematics

Sayantan Panja, University of Burdwan

Department of Mathematics

References

C. B. Ampadu, Some fixed point theory results for the interpolative Berinde weak operator, Earthline Journal of Mathematical Sciences 4 no. 2 (2020), 253–271. https://doi.org/10.34198/ejms.4220.253271

S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math. 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181

L. B. Ciric, A generalization of Banach’s contraction principle, Proc. Amer. Math. Soc. 45, no. 2 (1974), 267–273. https://doi.org/10.2307/2040075

H. Garai, L. K. Dey and T. Senapati, On Kannan-type contractive mappings, Numerical Functional Analysis and Optimization 39, no. 13 (2018), 1466–1476. https://doi.org/10.1080/01630563.2018.1485157

L. B. Ciric, Generalized contractions and fixed-point theorems, Publ. Inst. Math. 12 (1971), 19–26.

Y. U. Gaba and E. Karapinar, A new approach to the interpolative contractions, Axioms 8, no. 4 (2019), 110. https://doi.org/10.3390/axioms8040110

E. Karapinar, Revisiting the Kannan type contractions via interpolation. Adv. Theory Nonlinear Anal. Appl. 2, no. 2 (2018), 85–87. https://doi.org/10.31197/atnaa.431135

E. Karapinar, R. P. Agarwal and H. Aydi, Interpolative Reich-Rus-Ciric type contractions on partial metric spaces, Mathematics 6, no. 11 (2018), 256. https://doi.org/10.3390/math6110256

E. Karapinar, O. Alqahtani and H. Aydi, On interpolative Hardy-Rogers type contractions, Symmetry 11, no. 1 (2018), 8. https://doi.org/10.3390/sym11010008

A. F. Roldán López de Hierro, E. Karapinar and A. Fulga, Multiparametric contractions and related Hardy-Roger type fixed point theorems, Mathematics 8, no. 6 (2020), 957. https://doi.org/10.3390/math8060957

Downloads

Published

2021-04-01

How to Cite

[1]
K. Roy and S. Panja, “From interpolative contractive mappings to generalized Ciric-quasi contraction mappings”, Appl. Gen. Topol., vol. 22, no. 1, pp. 109–120, Apr. 2021.

Issue

Section

Regular Articles