From interpolative contractive mappings to generalized Ciric-quasi contraction mappings


  • Kushal Roy University of Burdwan
  • Sayantan Panja University of Burdwan



fixed point, restricted Ciric-quasi contraction mapping, interpolative strictly contractive type mapping, T-orbitally compact metric space


In this article we consider a restricted version of Ciric-quasi contraction mapping for showing that this mapping generalizes several known interpolative type contractive mappings. Also here we introduce the concept of interpolative strictly contractive type mapping T and prove a fixed point theorem for such mapping over a T-orbitally compact metric space. Some examples are given in support of our established results. Finally we give an observation regarding (λ, α, β)-interpolative Kannan contractions introduced by Gaba et al.


Download data is not yet available.

Author Biographies

Kushal Roy, University of Burdwan

Department of Mathematics

Sayantan Panja, University of Burdwan

Department of Mathematics


C. B. Ampadu, Some fixed point theory results for the interpolative Berinde weak operator, Earthline Journal of Mathematical Sciences 4 no. 2 (2020), 253–271.

S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math. 3 (1922), 133–181.

L. B. Ciric, A generalization of Banach’s contraction principle, Proc. Amer. Math. Soc. 45, no. 2 (1974), 267–273.

H. Garai, L. K. Dey and T. Senapati, On Kannan-type contractive mappings, Numerical Functional Analysis and Optimization 39, no. 13 (2018), 1466–1476.

L. B. Ciric, Generalized contractions and fixed-point theorems, Publ. Inst. Math. 12 (1971), 19–26.

Y. U. Gaba and E. Karapinar, A new approach to the interpolative contractions, Axioms 8, no. 4 (2019), 110.

E. Karapinar, Revisiting the Kannan type contractions via interpolation. Adv. Theory Nonlinear Anal. Appl. 2, no. 2 (2018), 85–87.

E. Karapinar, R. P. Agarwal and H. Aydi, Interpolative Reich-Rus-Ciric type contractions on partial metric spaces, Mathematics 6, no. 11 (2018), 256.

E. Karapinar, O. Alqahtani and H. Aydi, On interpolative Hardy-Rogers type contractions, Symmetry 11, no. 1 (2018), 8.

A. F. Roldán López de Hierro, E. Karapinar and A. Fulga, Multiparametric contractions and related Hardy-Roger type fixed point theorems, Mathematics 8, no. 6 (2020), 957.




How to Cite

K. Roy and S. Panja, “From interpolative contractive mappings to generalized Ciric-quasi contraction mappings”, Appl. Gen. Topol., vol. 22, no. 1, pp. 109–120, Apr. 2021.



Regular Articles