Further remarks on group-2-groupoids

Sedat Temel

Abstract

The aim of this paper is to obtain a group-2-groupoid as a 2-groupoid object in the category of groups and also as a special kind of an internal category in the category of group-groupoids. Corresponding group-2-groupoids, we obtain some categorical structures related to crossed modules and group-groupoids and prove categorical equivalences between them. These results enable us to obtain 2-dimensional notions of group-groupoids.

Keywords

crossed module; group-groupoid; 2-groupoid

Subject classification

20L05; 18D05; 18D35; 20J15

Full Text:

PDF

References

N. Alemdar and S. Temel, Group-2-groupoids and 2G-crossed modules, Hacet. J. Math. Stat. 48, no. 5 (2019), 1388-1397. https://doi.org/10.15672/HJMS.2018.580

J. C. Baez and A. D. Lauda, Higher Dimensional Algebra V: 2-Groups, Theory Appl. Categ. 12, no. 14 (2004), 423-491.

J. Bènabou, Introduction to bicategories, In: Reports of the Midwest Category Seminar. Lecture Notes in Mathematics 47 (1967), 1-77. https://doi.org/10.1007/BFb0074299

J. C. Baez, A. Baratin, L. Freidel and D. K. Wise, Infinite-Dimensional Representations of 2-Groups, Mem. Amer. Math. Soc. 219, 1032 (2012). https://doi.org/10.1090/S0065-9266-2012-00652-6

J. C. Baez and D. Stevenson, The classifying space of a topological 2-group, Abel Symposia, vol 4. Springer, Berlin, Heidelberg.

R. Brown and C. B. Spencer, G-groupoids, crossed modules and the fundamental groupoid of a topological group, Indagat. Math. (Proceedings) 79, no. 4 (1976), 296-302. https://doi.org/10.1016/1385-7258(76)90068-8

R. Brown, Higher dimensional group theory, Low Dimensional Topology, Cambridge University Press, 1982. https://doi.org/10.1017/CBO9780511758935

R. Brown, P. J. Higgins and R. Sivera, Nonabelian Algebraic Topology: filtered spaces, crossed complexes, cubical homotopy groupoids, European Mathematical Society Tracts in Mathematics 15, 2011. https://doi.org/10.4171/083

R. Brown and P. J. Higgins, Crossed complexes and non-abelian extensions, Category Theory. Lecture Notes in Mathematics, 962, Springer, Berlin, Heidelberg 1982. https://doi.org/10.1007/BFb0066884

R. Brown and P. J. Higgins, Tensor Products and Homotopies for $ omega- $groupoids and crossed complexes, J. Pure and Appl. Algebra 47 (1987), 1-33. https://doi.org/10.1016/0022-4049(87)90099-5

R. Brown and I. Icen, Homotopies and automorphisms of crossed module over groupoids, Appl. Categ. Structures, 11 (2003) 185-206.

R. Brown and G. H. Mosa, Double categories, 2-Categories, thin structures and connections, Theory Appl. Categ. 5, no. 7 (1999), 163-175.

L. Crane, Categorical physics (arXiv:hep-th/9301061v1).

C. Ehresmann, Catègories doubles et catègories structurès, Comptes rendus de l'Acadèmie des Sciences 256 (1963), 1198-1201.

C. Ehresmann, Catègories structurès, Annales Scientifiques de l'Ècole Normale Supèrieure 80 (1963), 349-425. https://doi.org/10.24033/asens.1125

J. Huebschmann, Crossed n-fold extensions of groups and cohomology, Comment. Math. Helvetici 55 (1980), 302-314. https://doi.org/10.1007/BF02566688

I. Icen, The equivalence of 2-groupoids and crossed modules, Commun. Fac. Sci. Univ. Ank. Series A1 49 (2000), 39-48. https://doi.org/10.1501/Commua1_0000000377

G. Janelidze, L. Marki and W. Tholen, Semi-abelian categories, J. Pure Appl. Algebra 168 (2002), 367-386. https://doi.org/10.1016/S0022-4049(01)00103-7

K. H. Kamps and T. Porter, 2-Groupoid enrichments in homotopy theory and algebra, K-Theory 25 (2002), 373-409. https://doi.org/10.1023/A:1016051407785

G. M. Kelly and R. Street, Review of the Elements of 2-Categories, Category Seminar. Lecture Notes in Mathematics, vol 420. (1974) Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0063101

J.-L. Loday, Cohomologie et groupe de Steinberg relatifs, J. Algebra 54 (1978), 178-202. https://doi.org/10.1016/0021-8693(78)90025-X

S. Maclane, Categories for the Working Mathematician, Graduate Text in Mathematics, (1971) Springer-Verlag New York. https://doi.org/10.1007/978-1-4612-9839-7

M. Forrester-Barker, Group objects and internal categories (arXiv:math/0212065).

B. Noohi, Notes on 2-groupoids, 2-groups and crossed modules, Homology Homotopy Appl. 9, no. 1 (2007), 75-106. https://doi.org/10.4310/HHA.2007.v9.n1.a3

T. Sahan and J. J. Mohammed, Categories internal to crossed modules, Sakarya University Journal of Science 23, no. 4 (2019), 519-531. https://doi.org/10.16984/saufenbilder.472805

S. Temel, T. Sahan, O. Mucuk, Crossed modules, double group-groupoids and crossed squares (arXiv:1802.03978v2).

S. Temel, Internal categories in crossed semimodules and Schreier internal categories, Math. Sci. Appl. E-Notes 8, no. 2 (2020), 86-95.https://doi.org/10.36753/mathenot.691956

J. H. C. Whitehead, Combinatorial homotopy II, Bull. Amer. Math. Soc. 55 (1949), 453-496. https://doi.org/10.1090/S0002-9904-1949-09213-3

J. H. C. Whitehead, Note on a previous paper entitled "On adding relations to homotopy group", Ann. Math. 47 (1946), 806-810. https://doi.org/10.2307/1969237

Abstract Views

200
Metrics Loading ...

Metrics powered by PLOS ALM




Esta revista se publica bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Universitat Politècnica de València

e-ISSN: 1989-4147   https://doi.org/10.4995/agt