Topological distances and geometry over the symmetrized Omega algebra
DOI:
https://doi.org/10.4995/agt.2020.13049Keywords:
omega Algebra, dymmetrized Omega algebra, semidendrite, exponents, convex and topologyAbstract
The aim of this paper is to study some topological distances properties, semidendrites and convexity on th symmetrized omega algebra. Furthermore, some properties and exponents on the symmetrized omega algebra are introduced.Downloads
References
A. C. F. Bueno, On the exponential function of right circulant matrices, International Journal of Mathematics and Scientific Computing 3, no. 2 (2013).
L. Hörmander, Notions of convexity, Progress in Mathematics 127, Birkh¨auser, Boston- Basel-Berlin (1994).
S. Khalid Nauman, C. Ozel and H. Zekraoui, Abstract Omega algebra that subsumes min and max plus algebras, Turkish Journal of Mathematics and Computer Science 11 (2019) 1-10.
G. L. Litvinov, The Maslov dequantization, idempotent and tropical mathematics: a brief introduction, Journal of Mathematical Sciences 140, no. 3 (2007), 426-444. https://doi.org/10.1007/s10958-007-0450-5
D. Maclagan and B. Sturmfels, Introduction to Tropical Geometry, Graduate Studies in Mathematics, vol. 161, American Mathematical Society, 2015. https://doi.org/10.1090/gsm/161
C. Ozel, A. Piekosz, E. Wajch and H. Zekraoui, The minimizing vector theorem in symmetrized max-plus algebra, Journal of Convex Analysis 26, no. 2 (2019), 661-686.
J.-E. Pin, Tropical semirings, Idempotency (Bristol, 1994), 50-69, Publ. Newton Inst., vol. 11, Cambridge Univ. Press, Cambridge, 1998. https://doi.org/10.1017/CBO9780511662508.004
I. Simon, Recognizable sets with multiplicities in the tropical semiring, in: Mathematical Foundations of Computer Science (Carlsbad, 1988), Lecture Notes in Computer Science, vol. 324, Springer, Berlin, 1988, pp. 107-120. https://doi.org/10.1007/BFb0017135
Downloads
Published
How to Cite
Issue
Section
License
This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike- 4.0 International License.