On I-quotient mappings and I-cs'-networks under a maximal ideal


  • Xiangeng Zhou Ningde Normal University




ideal convergence, maximal ideal, I-sequential neighborhood, I-quotient mappings, I-cs'-networks, I-FU spaces


Let I be an ideal on N and f : X → Y be a mapping. f is said to be an I-quotient mapping provided f−1(U) is I-open in X, then U is I-open in Y . P is called an I-cs"²-network of X if whenever {xn}n∈N is a sequence I-converging to a point x ∈ U with U open in X, then there is P ∈ P and some n0 ∈ N such that {x, xn0} ⊆ P ⊆ U. In this paper, we introduce the concepts of I-quotient mappings and I-cs"²-networks, and study some characterizations of I-quotient mappings and I-cs"²- networks, especially J -quotient mappings and J -cs"²-networks under a maximal ideal J of N. With those concepts, we obtain that if X is an J -FU space with a point-countable J -cs"²-network, then X is a meta-Lindelöf space.


Download data is not yet available.

Author Biography

Xiangeng Zhou, Ningde Normal University

Department of Mathematics


J. R. Boone and F. Siwiec, Sequentially quotient mappings, Czech. Math. J. 26 (1976), 174-182.

L. X. Cheng, G. C. Lin, Y. Y. Lan and H. Liu, Measure theory of statistical convergence, Sci. China Ser. A 51 (2008), 2285-2303. https://doi.org/10.1007/s11425-008-0017-z

L. X. Cheng, G. C. Lin and H. H. Shi, On real-valued measures of statistical type and their applications to statistical convergence, Math. Comput. Modelling 50 (2009), 116-122. https://doi.org/10.1016/j.mcm.2009.04.004

P. Das, Some further results on ideal convergence in topological spaces, Topol. Appl. 159 (2012), 2621-2626. https://doi.org/10.1016/j.topol.2012.04.007

P. Das and S. Ghosal, When I-Cauchy nets in complete uniform spaces are I-convergent, Topol. Appl. 158 (2011), 1529-1533. https://doi.org/10.1016/j.topol.2011.05.006

P. Das, Lj.D.R. Kocinac and D. Chandra, Some remarks on open covers and selection principles using ideals, Topol. Appl. 202 (2016), 183-193. https://doi.org/10.1016/j.topol.2016.01.003

G. Di Maio and Lj. D. R. Kocinac, Statistical convergence in topology, Topol. Appl. 156 (2008), 28-45. https://doi.org/10.1016/j.topol.2008.01.015

R. Engelking, General Topology (revised and completed edition), Heldermann Verlag, Berlin, 1989.

H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244. https://doi.org/10.4064/cm-2-3-4-241-244

L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand, Princeton, 1960. https://doi.org/10.1007/978-1-4615-7819-2

P. Kostyrko, T. Salát and W. Wilczynski, I-convergence, Real Anal. Exch. 26 (2000/2001), 669-686. https://doi.org/10.2307/44154069

B. K. Lahiri and P. Das, I and I*-convergence in topological spaces, Math. Bohemica 130, no. 2 (2005), 153-160.

S. Lin, Point-countable covers and sequence-covering mappings, Science Press, Beijing, 2015 (in Chinese).

S. Lin and Z.Q. Yun, Generalized metric spaces and mapping, Atlantis Studies in Mathematics 6, Atlantis Press, Paris, 2016. https://doi.org/10.2991/978-94-6239-216-8

S. K. Pal, N. Adhikary and U. Samanta, On ideal sequence covering maps, Appl. Gen. Topol. 20, no. 2 (2019), 363-377. https://doi.org/10.4995/agt.2019.11238

H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951), 73-74. https://doi.org/10.4064/cm-2-2-98-108

Z. Tang and F. Lin, Statistical versions of sequential and Fréchet-Urysohn spaces, Adv. Math. (China) 44 (2015), 945-954.

X. G. Zhou and M. Zhang, More about the kernel convergence and the ideal convergence, Acta Math. Sinica, English Series 29 (2013), 2367-2372.

X. G. Zhou and L. liu, On I-covering mappings and 1-I-covering mappings, J. Math. Res. Appl. (China) 40, no. 1 (2020) 47-56.

X. G. Zhou, L. Liu and S. Lin, On topological spaces defined by I-convergence, Bull. Iran. Math. Soc. 46 (2020), 675-692. https://doi.org/10.1007/s41980-019-00284-6




How to Cite

X. Zhou, “On I-quotient mappings and I-cs’-networks under a maximal ideal”, Appl. Gen. Topol., vol. 21, no. 2, pp. 235–246, Oct. 2020.



Regular Articles