Closed subsets of compact-like topological spaces

Serhii Bardyla, Alex Ravsky


We investigate closed subsets (subsemigroups, resp.) of compact-like topological spaces (semigroups, resp.). We show that each Hausdorff topological space is a closed subspace of some Hausdorff ω-bounded pracompact topological space and describe open dense subspaces of
countably pracompact topological spaces. We construct a pseudocompact topological semigroup which contains the bicyclic monoid as a closed subsemigroup. This example provides an affirmative answer to a question posed by Banakh, Dimitrova, and Gutik in [4]. Also, we show that the semigroup of ω×ω-matrix units cannot be embedded into a Hausdorff topological semigroup whose space is weakly H-closed.


pseudocompact space; H-closed space; semigroup of matrix units; bicyclic monoid

Subject classification

54D30; 22A15

Full Text:



L. Anderson, R. Hunter, and R. Koch, Some results on stability in semigroups, Trans. Amer. Math. Soc. 117 (1965), 521-529.

T. Banakh, S. Bardyla and A. Ravsky, Embedding topological spaces into Hausdorff κ-bounded spaces, preprint, arXiv:1906.00185v3

T. Banakh, S. Bardyla and A. Ravsky, Embeddings into countably compact Hausdorff spaces, preprint, arXiv:1906.04541.

T. Banakh, S. Dimitrova and O. Gutik, Embedding the bicyclic semigroup into countably compact topological semigroups, Topology Appl. 157, no. 18 (2010), 2803-2814.

S. Bardyla, Embedding of graph inverse semigroups into CLP-compact topological semigroups, Topology Appl. 272 (2020), 107058.

S. Bardyla and O. Gutik, On a semitopological polycyclic monoid, Algebra Discr. Math. 21, no. 2 (2016), 163-183.

D. Dikranjan and E. Giuli, $S(n)$-$theta$-closed spaces, Topology Appl. 28 (1988), 59-74.

D. Dikranjan and J. Pelant, Categories of topological spaces with sufficiently many sequentially closed spaces, Cahiers de Topologie et Geometrie Differentielle Categoriques 38, no. 4 (1997), 277-300.

A. Dow, J. R. Porter, R.M. Stephenson, Jr. and R. G. Woods, Spaces whose pseudocompact subspaces are closed subsets, Appl. Gen. Topol. 5, no. 2 (2004), 243-264.

R. Engelking, General Topology, 2nd ed., Heldermann, Berlin, 1989.

O. Gutik and K. Pavlyk, Topological semigroups of matrix units, Algebra Discr. Math. 3 (2005), 1-17.

O. Gutik, K. Pavlyk and A. Reiter, Topological semigroups of matrix units and countably compact Brandt $lambda^0$-extensions, Mat. Stud. 32, no. 2 (2009), 115-131.

O. Gutik and A. Ravsky, On old and new classes of feebly compact spaces, Visn. Lviv. Univ. Ser. Mech. Math. 85 (2018), 48-59.

O. Gutik and D. Repovs, On countably compact 0-simple topological inverse semigroups, Semigroup Forum. 75, no. 2 (2007), 464-469.

J. Hildebrant and R. Koch, Swelling actions of $Gamma$-compact semigroups, Semigroup Forum 33, no. 1 (1986), 65-85.

J. E. Joseph, On H-closed spaces, Proc. Amer. Math. Soc. 55, no. 1 (1976), 223-226.

J. E. Joseph, More characterizations of H-closed spaces, Proc. Amer. Math. Soc. 63, no. 1 (1977), 160-164.

D. D. Mooney, Spaces with unique Hausdorff extensions, Topology Appl. 61, no. 1 (1995), 241-256.

A. Osipov, Nearly H-closed spaces, Journal of Mathematical Sciences 155, no. 4 (2008), 626-633.

A. Osipov, Weakly H-closed spaces, Proceedings of the Steklov Institute of Mathematics 10, no. 1 (2004), S15-S17.

J. Porter, On locally H-closed spaces, Proc. London Math. Soc. 20, no. 3 (1970), 193-204.

J. Porter and J. Thomas, On H-closed and minimal Hausdorff spaces, Trans. Amer. Math. Soc. 138 (1969), 159-170.

J. Porter and C. Votaw, H-closed extensions I, Gen. Topology Appl. 3 (1973), 211-224.

J. Porter and C. Votaw, H-closed extensions II, Trans. Amer. Math. Soc. 202 (1975), 193-208.

J. Porter and R. Woods, Extensions and Absolues of Hausdorff Spaces, Springer, Berlin, 1988, 856 pp.

R. M. Stephenson, Jr, Initially κ-compact and related compact spaces, in: K. Kunen, J. E. Vaughan (eds.), Handbook of Set-Theoretic Topology, Elsevier, 1984, pp. 603-632.

J.E. Vaughan, Countably compact and sequentially compact spaces, in: K. Kunen, J. E. Vaughan (eds.), Handbook of Set-Theoretic Topology, Elsevier, 1984, 569-602.

N. Velichko, H-Closed Topological Spaces, American Mathematical Society 78, no. 2 (1968), 103-118.

J. Vermeer, Closed subspaces of H-closed spaces, Pacific Journal of Mathematics 118, no. 1 (1985), 229-247.

Abstract Views

Metrics Loading ...

Metrics powered by PLOS ALM

Esta revista se publica bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Universitat Politècnica de València

e-ISSN: 1989-4147