Fixed point results with respect to a wt-distance in partially ordered b-metric spaces and its application to nonlinear fourth-order differential equation

Reza Babaei

Iran, Islamic Republic of

Islamic Azad University

Ph.D.

Department of Mathematics, Faculty of Science, Central Tehran Branch

Hamidreza Rahimi

https://orcid.org/0000-0003-4883-4250

Iran, Islamic Republic of

Islamic Azad University

Professor of Mathematics

Department of Mathematics, Faculty of Science, Central Tehran Branch

Ghasem Soleimani Rad

https://orcid.org/0000-0002-0758-2758

Iran, Islamic Republic of

Islamic Azad University

Assistant Professor of Mathematics

Department of Mathematics, Faculty of Science, Central Tehran Branch

&

Young Researchers and Elite club, Islamic Azad University, IAU, Iran

|

Accepted: 2021-11-24

|

Published: 2022-04-01

DOI: https://doi.org/10.4995/agt.2022.11368
Funding Data

Downloads

Keywords:

partially ordered set, b-metric space, wt-distance, fixed point

Supporting agencies:

This research was not funded

Abstract:

In this paper we study the existence of the fixed points for Hardy-Rogers type mappings with respect to a wt-distance in partially ordered metric spaces. Our results provide a more general statement, since we replace a w-distance with a wt-distance and ordered metric spaces with ordered b-metric spaces. Some examples are presented to validate our obtained results and an application to nonlinear fourth-order differential equation are given to support the main results.

Show more Show less

References:

R. P. Agarwal, E. Karapinar, D. O'Regan and A. F. Roldan-Lopez-de-Hierro, Fixed Point Theory in Metric Type Spaces, Springer-International Publishing, Switzerland, 2015. https://doi.org/10.1007/978-3-319-24082-4

I. A. Bakhtin, The contraction mapping principle in almost metric space, Functional Anal. 30 (1989), 26-37.

S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux equations intégrales, Fund. Math. J. 3 (1922), 133-181. https://doi.org/10.4064/fm-3-1-133-181

M. Boriceanu, Fixed point theory for multivalued contractions on a set with two b-metrics, Creative. Math & Inf. 17, no. 3 (2008), 326-332.

M. Bota, A. Molnar and C. Varga, On Ekeland's variational principle in b-metric spaces, Fixed Point Theory. 12, no. 2 (2011), 21-28.

S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav. 1, no. 1 (1993), 5-11.

M. Demma, R. Saadati and P. Vetro, Multi-valued operators with respect wt-distance on metric type spaces, Bull. Iranian Math. Soc. 42, no. 6 (2016), 1571-1582.

K. Fallahi, M. Abbas and G. Soleimani Rad, Generalized $c$-distance on cone b-metric spaces endowed with a graph and fixed point results, Appl. Gen. Topol. 18, no. 2 (2017), 391-400. https://doi.org/10.4995/agt.2017.7673

K. Fallahi, A. Petrusel and G. Soleimani Rad, Fixed point results for pointwise Chatterjea type mappings with respect to a c-distance in cone metric spaces endowed with a graph, U.P.B. Sci. Bull. (Series A). 80, no. 1 (2018), 47-54.

G. E. Hardy and T. D. Rogers, A generalization of a fixed point theorem of Reich, Canad. Math. Bull. 16 (1973), 201-206. https://doi.org/10.4153/CMB-1973-036-0

N. Hussain, R. Saadati and R. P. Agrawal, On the topology and wt-distance on metric type spaces, Fixed Point Theory Appl. 2014, 2014:88. https://doi.org/10.1186/1687-1812-2014-88

D. Ilić and V. Rakočević, Common fixed points for maps on metric space with $w$-distance, Appl. Math. Comput. 199, no. 2 (2008), 599-610. https://doi.org/10.1016/j.amc.2007.10.016

J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc. 136 (2008), 1359-1373. https://doi.org/10.1090/S0002-9939-07-09110-1

M. Jleli, V. Čojbašić Rajić, B. Samet and C. Vetro, Fixed point theorems on ordered metric spaces and applications to nonlinear elastic beam equations, J. Fixed Point Theory Appl. 12 (2012), 175-192. https://doi.org/10.1007/s11784-012-0081-4

M. Jovanović, Z. Kadelburg and S. Radenović, Common fixed point results in metric-type spaces, Fixed Point Theory Appl. 2010, 2010:978121. https://doi.org/10.1155/2010/978121

O. Kada, T. Suzuki and W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Japon. 44 (1996), 381-391.

M. A. Khamsi and N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal. 73 (2010), 3123-3129. https://doi.org/10.1016/j.na.2010.06.084

J. J. Nieto and R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order. 22, no. 3 (2005), 223-239. https://doi.org/10.1007/s11083-005-9018-5

A. Petrusel and I. A. Rus, Fixed point theorems in ordered $L$-spaces, Proc. Amer. Math. Soc. 134, no. 2 (2006), 411-418. https://doi.org/10.1090/S0002-9939-05-07982-7

H. Rahimi, M. Abbas and G. Soleimani Rad, Common fixed point results for four mappings on ordered vector metric spaces, Filomat. 29, no. 4 (2015), 865-878. https://doi.org/10.2298/FIL1504865R

A. C. M. Ran and M. C. B. Reurings, A fixed point theorem in partially ordered sets and some application to matrix equations, Proc. Amer. Math. Soc. 132 (2004), 1435-1443. https://doi.org/10.1090/S0002-9939-03-07220-4

B. E. Rhoades, A comparison of various definition of contractive mappings, Trans. Amer. Math. Soc. 266 (1977), 257-290. https://doi.org/10.1090/S0002-9947-1977-0433430-4

N. Shioji, T. Suzuki and W. Takahashi, Contractive mappings, Kannan mappings and metric completeness, Proc. Amer. Math. Soc. 126, no. 10 (1998), 3117-3124. https://doi.org/10.1090/S0002-9939-98-04605-X

W. A. Wilson, On semi-metric spaces, Amer. Jour. Math. 53, no. 2 (1931), 361-373. https://doi.org/10.2307/2370790

Show more Show less