The function ω ƒ on simple n-ods

Authors

  • Ivon Vidal-Escobar Universidad Nacional Autónoma de México
  • Salvador Garcia-Ferreira Universidad Nacional Autónoma de México

DOI:

https://doi.org/10.4995/agt.2019.11065

Keywords:

simple triod, equicontinuity, ω-limit set, fixed points, discrete dynamical system

Abstract

Given a discrete dynamical system (X, ƒ), we consider the function ωƒ-limit set from X to 2x as

ωƒ(x) = {y ∈ X : there exists a sequence of positive integers 
n1 < n2 < ... such that limk→∞ ƒnk (x) = y},

for each x ∈ X. In the article [1], A. M. Bruckner and J. Ceder established several conditions which are equivalent to the continuity of the function ωƒ where ƒ: [0,1] → [0,1] is continuous surjection. It is natural to ask whether or not some results of [1] can be extended to finite graphs. In this direction, we study the function ωƒ when the phase space is a n-od simple T. We prove that if ωƒ is a continuous map, then Fix(ƒ2) and Fix(ƒ3) are connected sets. We will provide examples to show that the inverse implication fails when the phase space is a simple triod. However, we will prove that:

Theorem A 2. If ƒ: T → T is a continuous function where T is a simple triod then ωƒ is a continuous set valued function iff the family {ƒ0, ƒ1, ƒ2,} is equicontinuous.

As a consequence of our results concerning the ωƒ function on the simple triod, we obtain the following characterization of the unit interval.

Theorem A 1. Let G be a finite graph. Then G is an arc iff for each continuous function ƒ: G → G the following conditions are equivalent:
(1) The function ωƒ is continuous.
(2) The set of all fixed points of ƒ2 is nonempty and connected.

Downloads

Download data is not yet available.

Author Biographies

Ivon Vidal-Escobar, Universidad Nacional Autónoma de México

Centro de Ciencias Matemáticas

Salvador Garcia-Ferreira, Universidad Nacional Autónoma de México

Centro de Ciencias Matemáticas

References

A. M. Bruckner and J. Ceder, Chaos in terms of the map x → ω(x,f)$, Pacific J. Math. 156 (1992), 63-96. https://doi.org/10.2140/pjm.1992.156.63

Â

R. Gu, Equicontinuity of maps on figure-eight space, Southeast Asian Bull. Math. 25 (2001), 413-419. https://doi.org/10.1007/s100120100004

Â

W. Hurewicz and H. Wallman, Dimension theory, Princeton University Press, Princeton (1941). https://doi.org/10.1515/9781400875665

Â

A. Illanes and S. B. Nadler, Jr., Hyperspaces: Fundamental and Recent Advances, A Series of Monographs and Textbooks Pure and Applied Mathematics 216, Marcel Decker Inc. New York (1998).

Â

S. Kolyada and L. Snoha, Some aspects of topological transitivity a survey, Grazer Math. Ber. 334 (1997), 3-35.

Â

L. Lum, A Characterization of Local Connectivity in Dendroids, Studies in Topology (Proc. Conf., Univ. North Carolina, Charlotte NC 1974); Academic Press (1975), 331-338. https://doi.org/10.1016/B978-0-12-663450-1.50033-5

Â

J. Mai, The structure of equicontinuous maps, Trans. Amer. Math. Soc. 355 (2003), 4125-4136. https://doi.org/10.1090/S0002-9947-03-03339-7

Â

S. B. Nadler, Jr., Continuum Theory: An Introduction, A Series of Monographs and Textbooks Pure and Applied Mathematics 158, Marcel Decker Inc. New York (1992).

Â

T. X. Sun, G. W. Su, H. J. Xi and X. Kong, Equicontinuity of maps on a dendrite with finite branch points, Acta Math. Sin. (Engl. Ser.) 33 (2017), 1125-1130. https://doi.org/10.1007/s10114-017-6289-x

Downloads

Published

2019-10-01

How to Cite

[1]
I. Vidal-Escobar and S. Garcia-Ferreira, “The function ω ƒ on simple n-ods”, Appl. Gen. Topol., vol. 20, no. 2, pp. 325–347, Oct. 2019.

Issue

Section

Articles