Existence ofixed points for pointwise eventually asymptotically nonexpansive mappings

M. Radhakrishnan, S. Rajesh

Abstract

Kirk introduced the notion of pointwise eventually asymptotically non-expansive mappings and proved that uniformly convex Banach spaces have the fixed point property for pointwise eventually asymptotically non expansive maps. Further, Kirk raised the following question: “Does a Banach space X have the fixed point property for pointwise eventually asymptotically nonexpansive mappings when ever X has the fixed point property for nonexpansive mappings?”. In this paper, we prove that a Banach space X has the fixed point property for pointwise eventually asymptotically nonexpansive maps if X  has uniform normal structure or X is uniformly convex in every direction with the Maluta constant D(X) < 1. Also, we study the asymptotic behavior of the sequence {Tnx} for a pointwise eventually asymptotically nonexpansive map T defined on a nonempty weakly compact convex subset K of a Banach space X whenever X satisfies the uniform Opial condition or X has a weakly continuous duality map.


Keywords

fixed points; pointwise eventually asymptotically nonexpansive mappings; uniform normal structure; uniform Opial condition; duality mappings

Subject classification

47H10; 47H09.

Full Text:

PDF

References

A. G. Aksoy and M. A. Khamsi, Nonstandard Methods in Fixed Point Theory, Springer-Verlag, New York, 1990. https://doi.org/10.1007/978-1-4612-3444-9

J. B. Baillon, R. E. Bruck and S. Reich, On the asymptotic behavior of nonexpansive mappings and semigroups in Banach spaces, Houston J. Math. 4 (1978), 1-9.

M. S. Brodskii and D. P. Milman, On the center of a convex set, Dokl. Akad. Nauk SSSR 59 (1948), 837-840.

F. E. Browder, Convergence theorems for sequences of nonlinear operators in Banach spaces, Math. Z. 100 (1967), 201-225. https://doi.org/10.1007/BF01109805

W. L. Bynum, Normal structure coefficients for Banach spaces, Pac. J. Math. 86 (1980), 427-436. https://doi.org/10.2140/pjm.1980.86.427

E. Casini and E. Maluta, Fixed points of uniformly Lipschitzian mappings in spaces with uniformly normal structure, Nonlinear Anal. 9 (1985), 103-108. https://doi.org/10.1016/0362-546X(85)90055-0

G. Emmanuele, Asymptotic behavior of iterates of nonexpansive mappings in Banach spaces with Opial's condition, Proc. Amer. Math. Soc. 94 (1985), 103-109. https://doi.org/10.2307/2044960

G. Li and B. Sims, Fixed point theorems for mappings of asymptotically nonexpansive type, Nonlinear Anal. 50 (2002), 1085-1091. https://doi.org/10.1016/S0362-546X(01)00744-1

K. Goebel and W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1972), 171-174. https://doi.org/10.1090/S0002-9939-1972-0298500-3

K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Univ. Press, Cambridge, 1990. https://doi.org/10.1017/CBO9780511526152

J. P. Gossez and E. Lami Dozo, Some geometric properties related to the fixed point theory for nonexpansive mappings, Pac. J. Math. 40 (1972), 565-573. https://doi.org/10.2140/pjm.1972.40.565

T. H. Kim and H. K. Xu, Remarks on asymptotically nonexpansive mappings, Nonlinear Anal. 41 (2000), 405-415. https://doi.org/10.1016/S0362-546X(98)00284-3

W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004-1006. https://doi.org/10.2307/2313345

W. A. Kirk, Fixed point theorems for non-Lipschitzian mappings of asymptotically nonexpansive type, Israel J. Math. 17 (1974), 339-346. https://doi.org/10.1007/BF02757136

W. A. Kirk, Remarks on nonexpansive mappings and related asymptotic conditions, J. Nonlinear Convex Anal. 18 (2017), 1-15.

W. A. Kirk and H. K. Xu, Asymptotic pointwise contraction, Nonlinear Anal. 68 (2008), 4706-4712. https://doi.org/10.1016/j.na.2007.11.023

T. C. Lim and H. K. Xu, Fixed point theorems for asymptotically nonexpansive mappings, Nonlinear Anal. 22 (1994), 1345-1355. https://doi.org/10.1016/0362-546X(94)90116-3

P. K. Lin, K. K. Tan and H. K. Xu, Demiclosed principle and asymptotic behavior for asymptotically nonexpansive mappings, Nonlinear Anal. 24 (1995), 929-946. https://doi.org/10.1016/0362-546X(94)00128-5

E. Maluta, Uniformly normal structure and related coefficients, Pac. J. Math. 111 (1984), 357-369. https://doi.org/10.2140/pjm.1984.111.357

Z. Opial, Weak convergence of the sequences of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 595-597. https://doi.org/10.1090/S0002-9904-1967-11761-0

S. Prus, Banach spaces with the uniform Opial property, Nonlinear Anal. 18 (1992), 697-704. https://doi.org/10.1016/0362-546X(92)90165-B

H. K. Xu, Existence and convergence for fixed points of mappings of asymptotically nonexpansive type, Nonlinear Anal. 16 (1991), 1139-1146. https://doi.org/10.1016/0362-546X(91)90201-B

Abstract Views

992
Metrics Loading ...

Metrics powered by PLOS ALM




Esta revista se publica bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Universitat Politècnica de València

e-ISSN: 1989-4147   https://doi.org/10.4995/agt