On Reich type λ−α-nonexpansive mapping in Banach spaces with applications to L1([0,1])

Rabah Belbaki, Erdal Karapinar, Amar Ould-Hammouda,

Abstract

In this manuscript we introduce a new class of monotone generalized nonexpansive mappings and establish some weak and strong convergence theorems for Krasnoselskii iteration in the setting of a Banach space with partial order. We consider also an application to the space L1([0,1]). Our results generalize and unify the several related results in the literature.


Keywords

fixed point; Krasnoselskii iteration; monotone mapping; Reich type λ−α-nonexpansive mapping; optial property

Subject classification

46T99; 47H10; 54H25

Full Text:

PDF

References

K. Aoyama and F. Kohsaka, Fixed point theorem for α-nonexpansive mappings in Banach spaces, Nonlinear Anal. 74 (2011), 4387-4391. https://doi.org/10.1016/j.na.2011.03.057

J.-B. Baillon, Quelques aspects de la théorie des points fixes dans les espaces de Banach. I, II. In : Séminaire d'analyse fonctionnelle (1978-1979), pp. 7-8. Ecole Polytech., Palaiseau (1979).

H. Brezis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Am. Math. Soc. 88, no. 3 (1983), 486-490. https://doi.org/10.2307/2044999

F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Natl. Acad. Sci. USA 54 (1965) 1041-1044. https://doi.org/10.1073/pnas.54.4.1041

F. E. Browder, Fixed-point theorems for noncompact mappings in Hilbert space, Proc. Natl. Acad. Sci. USA 53 (1965), 1272-1276. https://doi.org/10.1073/pnas.53.6.1272

J. B. Diaz and F. T. Metcalf, On the structure of the set of subsequential limit points of successive approximations, Bull. Am. Math. Soc.73 (1967), 516-519. https://doi.org/10.1090/S0002-9904-1967-11725-7

J. G. Falset, E. L. Fuster and T. Suzuki, Fixed point theory for a class of generalized nonexpansive mappings, J. Math. Anal. Appl. 375 (2011), 185-195. https://doi.org/10.1016/j.jmaa.2010.08.069

K. Goebel and W. A. Kirk, Iteration processes for nonexpansive mappings, Contemp. Math. 21 (1983), 115-123. https://doi.org/10.1090/conm/021/729507

K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory. Cambridge Studies in Advanced Mathematics, vol. 28, p.244. Cambridge University Press (1990). https://doi.org/10.1017/CBO9780511526152

D. Gohde, Zum prinzip der dertraktiven abbildung, Math. Nachr. 30 (1965), 251-258. https://doi.org/10.1002/mana.19650300312

J. P. Gossez and E. Lami Dozo, Some geometric properties related to the fixed point theory for nonexpansive mappings, Pacific J. Math. 40 (1972), 565-573. https://doi.org/10.2140/pjm.1972.40.565

E. Karapinar, Remarks on Suzuki (C)-condition, dynamical systems and methods, Springer-Verlag New York, 2012, Part 2, 227-243. https://doi.org/10.1007/978-1-4614-0454-5_12

E. Karapinar and K. Tas, Generalized (C)-conditions and related fixed point theorems, Comput. Math. Appl. 61, no. 11 (2011), 3370-3380. https://doi.org/10.1016/j.camwa.2011.04.035

M. A. Khamsi, and A. R. Khan, On monotone nonexpansive mappings in L1[0,1]. Fixed point theory Appl. 2015, Article ID 94 (2015). https://doi.org/10.1186/s13663-015-0346-x

W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Am. Math. Mon. 72 (1965), 1004-1006. https://doi.org/10.2307/2313345

W. A. Kirk, Krasnoselskii's iteration process in hyperbolic space, Numer. Func. Anal. Opt. 4, no. 4 (1982), 371-381. https://doi.org/10.1080/01630568208816123

Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597. https://doi.org/10.1090/S0002-9904-1967-11761-0

R. Shukla, R. Pant and M. De la Sen, Generalized $alpha$-nonexpansive mappings in Banach spaces, Fixed Point Theory and Applications (2017) 2017:4. https://doi.org/10.1186/s13663-017-0597-9

Y. Song, K. Promluang, P. Kuman and Y. Je Cho, Some convergence theorems of the Mann iteration for monotone α-nonexpansive mappings, Appl. Math. Comput. 287/288 (2016), 74-82. https://doi.org/10.1016/j.amc.2016.04.011

T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl. 340, no. 2 (2008), 1088-1095. https://doi.org/10.1016/j.jmaa.2007.09.023

D. van Dulst, Equivalent norms and the fixed point property for nonexpansive mappings, J. London Math. Soc. 25 (1982), 139-144. https://doi.org/10.1112/jlms/s2-25.1.139

P. Veeramani, On some fixed point theorems on uniformly convex Banach spaces, J. Math. Anal. Appl. 167 (1992), 160-166. https://doi.org/10.1016/0022-247X(92)90243-7

Abstract Views

2067
Metrics Loading ...

Metrics powered by PLOS ALM




Esta revista se publica bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Universitat Politècnica de València

e-ISSN: 1989-4147   https://doi.org/10.4995/agt