On monotonous separately continuous functions

YAROSLAV I. GRUSHKA

Department of Nonlinear analysis, Institute of Mathematics NAS of Ukraine, Kyiv (grushka@imath.kiev.ua)

Communicated by O. Valero

Abstract

Let \(T = (T, \leq) \) and \(T_1 = (T_1, \leq_1) \) be linearly ordered sets and \(X \) be a topological space. The main result of the paper is the following:

If function \(f(t, x) : T \times X \to T_1 \) is continuous in each variable ("t" and "x") separately and function \(f_x(t) = f(t, x) \) is monotonous on \(T \) for every \(x \in X \), then \(f \) is continuous mapping from \(T \times X \) to \(T_1 \), where \(T \) and \(T_1 \) are considered as topological spaces under the order topology and \(T \times X \) is considered as topological space under the Tychonoff topology on the Cartesian product of topological spaces \(T \) and \(X \).

2010 MSC: 54C05.

Keywords: separately continuous mappings; linearly ordered topological spaces; Young’s theorem.

1. Introduction

In 1910 W.H. Young had proved the following theorem.

Theorem A (see [9]). Let \(f : \mathbb{R}^2 \to \mathbb{R} \) be separately continuous. If \(f(\cdot, y) \) is also monotonous for every \(y \), then \(f \) is continuous.

In 1969 this theorem was generalized for the case of separately continuous function \(f : \mathbb{R}^d \to \mathbb{R} \) (\(d \geq 2 \)):

Theorem B (see [5]). Let \(f : \mathbb{R}^{d+1} \to \mathbb{R} \) (\(d \in \mathbb{N} \)) be continuous in each variable separately. Suppose \(f(t_1, \ldots, t_d, \tau) \) is monotonous in each \(t_i \) separately (\(1 \leq i \leq d \)). Then \(f \) is continuous on \(\mathbb{R}^{d+1} \).

Note that theorems A and B were also mentioned in the overview [2]. In the papers [6, 7] authors investigated functions of kind \(f : T \times X \to \mathbb{R} \), where
Ya. I. Grushka

\((T, \leq)\) is linearly ordered set equipped by the order topology, \((X, \tau_X)\) is any topological space and the function \(f\) is monotonous relatively to the first variable as well continuous (or quasi-continuous) relatively to the second variable. In particular in \([7]\) it was proven that each separately quasi-continuous and monotonous relatively to the first variable function \(f : \mathbb{R} \times X \to \mathbb{R}\) is quasi-continuous relatively to the set of variables. The last result may be considered as the abstract analog of Young’s theorem (Theorem A) for separately quasi-continuous functions.

However, we do not know any direct generalization of Theorem A (for separately continuous and monotonous relatively to the first variable function) in abstract topological spaces at the present time. In the present paper we prove the generalization of theorems A and B for the case of (separately continuous and monotonous relatively to the first variable) function \(f : T \times X \to T_1\), where \((T, \leq), (T_1, \leq_1)\) are linearly ordered sets equipped by the order topology and \(X\) is any topological space.

2. Preliminaries

Let \(T = (T, \leq)\) be any linearly (ie totally) ordered set (in the sense of \([1]\)). Then we can define the strict linear order relation on \(T\) such that for any \(t, \tau \in T\) the correlation \(t < \tau\) holds if and only if \(t \leq \tau\) and \(t \neq \tau\). Together with the linearly ordered set \(T\) we introduce the linearly ordered set \(T_{\pm\infty} = (T \cup \{-\infty, +\infty\}, \leq)\), where the order relation is extended on the set \(T \cup \{-\infty, +\infty\}\) by means of the following clear conventions:

- **(a):** \(-\infty < +\infty\);
- **(b):** \((\forall t \in T)\) \((-\infty < t < +\infty)\).

Recall \([1]\) that every such linearly ordered set \(T = (T, \leq)\) can be equipped by the natural “internal” order topology \(\tau_{pi}[T]\), generated by the base consisting of the open sets of kind:

\[
(\tau_1, \tau_2) = \{t \in T | \tau_1 < t < \tau_2\},
\]

where \(\tau_1, \tau_2 \in T \cup \{-\infty, +\infty\}, \tau_1 < \tau_2\).

Let \((X, \tau_X)\), \((Y, \tau_Y)\) and \((Z, \tau_Z)\) be topological spaces. By \(C(X, Y)\) we denote the collection of all continuous mappings from \(X\) to \(Y\). For a mapping \(f : X \times Y \to Z\) and a point \((x, y) \in X \times Y\) we write

\[
f^x(y) := f_y(x) := f(x, y).
\]

Recall \([3]\) that the mapping \(f : X \times Y \to Z\) is refereed to as separately continuous if and only if \(f^x \in C(Y, Z)\) and \(f_y \in C(X, Z)\) for every point \((x, y) \in X \times Y\) (see also \([6–8]\)). The set of all separately continuous mappings \(f : X \times Y \to Z\) is denoted by \(CC(X \times Y, Z)\) \([3, 6–8]\).

Let \(T = (T, \leq)\) and \(T_1 = (T_1, \leq_1)\) be linearly ordered sets. We say that a function \(f : T \to T_1\) is non-decreasing (non-increasing) on \(T\) if and only if for every \(t, \tau \in T\) the inequality \(t \leq \tau\) leads to the inequality \(f(t) \leq_1 f(\tau)\)
(f(τ) ≤_1 f(t)) correspondingly. Function f : T → T_1, which is non-decreasing or non-increasing on T is called by **monotonous**.

3. Main Results

Let (X_1, τ_{X_1}), . . . , (X_d, τ_{X_d}) (d ∈ N) be topological spaces. Further we consider X_1 × · · · × X_d as a topological space under the Tychonoff topology τ_{X_1×···×X_d} on the Cartesian product of topological spaces X_1, . . . , X_d. Recall [4, Chapter 3] that topology τ_{X_1×···×X_d} is generated by the base of kind:

\[\{ U_1 × · · · × U_d | (∀ j ∈ \{1, . . . , d\}) (U_j ∈ τ_{X_j}) \}. \]

Theorem 3.1. Let T = (T, ≤) and T_1 = (T_1, ≤_1) be linearly ordered sets and (X, τ_X) be a topological space.

If f ∈ CC(T × X, T_1) and function f_x(t) = f(t, x) is monotonous on T for every x ∈ X, then f is continuous mapping from the topological space (T × X, τ_{T×X}) to the topological space (T_1, τ_{pi}[T_1]).

Proof. Consider any ordered pair (t_0, x_0) ∈ T × X. Take any open set V ⊆ T_1 such that f(t_0, x_0) ∈ V. Since the sets of kind (2.1) form the base of topology τ_{pi}[T_1], there exist τ_1, τ_2 ∈ T_1 ∪ {−∞, +∞} such that τ_1 <_1 f(t_0, x_0) <_1 τ_2 and (τ_1, τ_2) ⊆ V, where <_1 is the strict linear order, generated by (non-strict) order ≤_1 (on T_1 ∪ {−∞, +∞}). The function f is separately continuous.

So, since the sets of kind (2.1) form the base of topology τ_{pi}[T], there exist t_1, t_2 ∈ T ∪ {−∞, +∞} such that

\[t_1 < t_0 < t_2 \quad \text{and} \]

\[f[(t_1, t_2) × \{x_0\}] ⊆ (τ_1, τ_2). \]

Further we need the some additional denotations.

- In the case, where (t_1, t_0) ≠ ∅ we choose any element α_1 ∈ T such that t_1 < α_1 < t_0 and denote α_1 := α_1. In the opposite case we denote α_1 := t_0, α_1 := t_1.
- In the case (t_0, t_2) ≠ ∅ we choose any element α_2 ∈ T such that t_0 < α_2 < t_2 and denote α_2 := α_2. In the opposite case we denote α_2 := t_0, α_2 := t_2.

It is not hard to verify, that in the all cases the following conditions are performed:

\[α_1, α_2 ∈ T, \quad \tilde{α}_1, \tilde{α}_2 ∈ T ∪ \{-∞, +∞\}; \]

\[α_1 ≤ α_2; \]

\[\tilde{α}_1 < \tilde{α}_2; \]

\[[α_1, α_2] ⊆ (t_1, t_2), \quad \text{where} \ [α_1, α_2] = \{t ∈ T | α_1 ≤ t ≤ α_2\}; \]

\[t_0 ∈ (\tilde{α}_1, \tilde{α}_2) ⊆ [α_1, α_2]. \]

According to (3.3), α_1, α_2 ∈ (t_1, t_2). Hence, according to (3.2), interval (τ_1, τ_2) is an open neighborhood of the both points f(α_1, x_0) and f(α_2, x_0).
Since the function \(f \) is separately continuous on \(T \times X \), then there exist an open neighborhood \(U \in \tau_X \) of the point \(x_0 \) (in the space \(X \)) such that:

\[
(3.5) \quad f[\{(\alpha_1) \times U\}] \subseteq (\tau_1, \tau_2);
\]

\[
(3.6) \quad f[\{(\alpha_2) \times U\}] \subseteq (\tau_1, \tau_2).
\]

The set \((\tilde{\alpha}_1, \tilde{\alpha}_2) \times U \) is an open neighborhood of the point \((t_0, x_0)\) in the topology \(\tau_{T \times X} \) of the space \(T \times X \). Now our aim is to prove that

\[
(3.7) \quad \forall (t, x) \in (\tilde{\alpha}_1, \tilde{\alpha}_2) \times U \ (f(t, x) \in (\tau_1, \tau_2) \subseteq V).
\]

So, chose any point \((t, x) \in (\tilde{\alpha}_1, \tilde{\alpha}_2) \times U \). According to the condition (3.4), we have \((t, x) \in [\alpha_1, \alpha_2] \times U \), that is \(\alpha_1 \leq t \leq \alpha_2 \) and \(x \in U \). In accordance with (3.5), (3.6), we have \(f(\alpha_1, x) \in (\tau_1, \tau_2) \) and \(f(\alpha_2, x) \in (\tau_1, \tau_2) \). Hence, since the function \(f(\cdot, x) \) is monotonous on \(T \) and \(\alpha_1 \leq t \leq \alpha_2 \), we deduce \(f(t, x) \in (\tau_1, \tau_2) \subseteq V \). Thus, the correlation (3.7) is proven. Hence, the function \(f \) is continuous in (every) point \((t_0, x_0) \in T \times X \).

Theorem A is a consequence of Theorem 3.1 in the case \(T = X = \mathbb{R} \), where \(\mathbb{R} \) is considered together with the usual linear order on the field of real numbers and usual topology.

Corollary 3.2. Let \(T_0 = (T_0, \leq_0) \), \(T_1 = (T_1, \leq_1) \), \ldots, \(T_d = (T_d, \leq_d) \) (\(d \in \mathbb{N} \)) be linearly ordered sets, and \((X, \tau_X) \) be a topological space.

If the function \(f : T_1 \times \cdots \times T_d \times X \rightarrow T_0 \) is continuous in each variable separately and \(f(t_1, \ldots, t_d, \tau) \) is monotonous in each \(t_i \) separately (\(1 \leq i \leq d \)) then \(f \) is a continuous mapping from the topological space \((T_1 \times \cdots \times T_d \times X, \tau_{T_1 \times \cdots \times T_d \times X}) \) to the topological space \((T_0, \Sigma_p \pi [T_0]) \).

Proof. We will prove this corollary by induction. For \(d = 1 \) the corollary is true by Theorem 3.1. Assume, that the corollary is true for the number \(d - 1 \), where \(d \in \mathbb{N} \), \(d \geq 2 \). Suppose, that function \(f : T_1 \times \cdots \times T_d \times X \rightarrow T_0 \) is satisfying the conditions of the corollary. Then we may consider this function as a mapping from \(T_1 \times X(d) \) to \(T_0 \), where \(X(d) = T_2 \times \cdots \times T_d \times X \). According to inductive hypothesis, function \(f(t_1, \cdot) \) is continuous on \(X(d) \) for every fixed \(t_1 \in T_1 \). So \(f \) is a separately continuous mapping from \(T_1 \times X(d) \) to \(T_0 \). Moreover, \(f \) is monotonous relatively to the first variable (by conditions of the corollary). Hence, by Theorem 3.1, \(f \) is continuous on \(T_1 \times X(d) \).

Theorem B is a consequence of Corollary 3.2 in the case \(T_0 = T_1 = \cdots = T_d = X = \mathbb{R} \), where \(\mathbb{R} \) is considered together with the usual linear order on the field of real numbers and usual topology. In the case \(T_0 = \mathbb{R} \), \(T_j = (a_j, b_j) \), \(X = (a_{d+1}, b_{d+1}) \) where \(a_j, b_j \in \mathbb{R} \) and \(a_j < b_j \) \((j \in \{1, \ldots, d + 1\})\) and intervals \((a_j, b_j)\) are considered together with the usual linear order and topology, induced from the field of real numbers, we obtain the following corollary.

Corollary 3.3. If the function \(f : (a_1, b_1) \times \cdots \times (a_d, b_d) \times (a_{d+1}, b_{d+1}) \rightarrow \mathbb{R} \) (\(d \in \mathbb{N} \)) is continuous in each variable separately and \(f(t_1, \ldots, t_d, \tau) \) is monotonous in each \(t_i \) separately (\(1 \leq i \leq d \)) then \(f \) is a continuous mapping from \((a_1, b_1) \times \cdots \times (a_{d+1}, b_{d+1})\) to \(\mathbb{R} \).
On monotonous separately continuous functions

Remark 3.4. In fact in the paper [5] the more general result was formulated, in comparison with Theorem B. Namely the author of [5] had considered the real valued function \(f(t_1, \ldots, t_d, \tau) \) defined on an open set \(G \subseteq \mathbb{R}^{d+1}, d \in \mathbb{N} \) such that \(f \) is continuous in each variable separately and monotonous in each \(t_i \) separately (\(1 \leq i \leq d \)). But this result of [5] can be delivered from Corollary 3.3, because for each point \(t = (t_1, \ldots, t_d, \tau) \in G \) in the open set \(G \) there exists the set of intervals \((a_1, b_1), \ldots, (a_{d+1}, b_{d+1})\) such that \(t \in (a_1, b_1) \times \cdots \times (a_{d+1}, b_{d+1}) \subseteq G \).

References

