A decomposition of normality via a generalization of κ-normality

ANANGA KUMAR DAS AND PRATIBHA BHAT

Department of Mathematics, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir-182320, INDIA (ak.das@smvdu.ac.in, akdasdu@yahoo.co.in and pratibhast7bhat@gmail.com)

Communicated by T. Nogura

ABSTRACT

A simultaneous generalization of κ-normality and weak θ-normality is introduced. Interrelation of this generalization of normality with existing variants of normality is studied. In the process of investigation a new decomposition of normality is obtained.

2010 MSC: Primary 54D10; 54D15; Secondary 54D20.

KEYWORDS: regularly open set; regularly closed set; θ-open set; θ-closed set; κ-normal (mildly) normal space; almost normal space; (weakly) (functionally) θ-normal space; weakly κ-normal space; Δ-normal space; strongly seminormal space.

1. INTRODUCTION AND PRELIMINARIES

Several generalized notions of normality such as almost normal, κ-normal, Δ-normal, θ-normal, semi-normal, Quasi-normal, π-normal, densely normal etc. exist in the literature. Recently, Interrelation among some of these variants of normality was studied in [4] and factorizations of normality are obtained in [4, 5, 12, 14]. In this paper, we tried to exhibit the interrelations that exist among these generalized notions of normality and introduced a simultaneous generalization of κ-normality and weak θ-normality called weak κ-normality. Interestingly, the class of weakly κ-normal spaces contains the class of almost compact spaces whereas the class of κ-normal spaces does not contain the class of almost compact spaces. This newly introduced notion of weak normality
A. K. Das and P. Bhat

is utilized to obtain a factorization of normality. Moreover, it is verified that
some covering properties which need not imply \(\kappa \)-normality implies weak \(\kappa \)-normality.

Let \(X \) be a topological space and let \(A \subset X \). Throughout the present paper,
the closure and interior of a set \(A \) will be denoted by \(\overline{A} \) (or \(clA \)) and \(intA \) (or \(A^o \)) respectively. A set \(U \subset X \) is said to be regularly open [15] if \(U = \text{in} \overline{U} \). The complement of a regularly open set is called regularly closed. It is observed that
an intersection of two regularly closed sets need not be regularly closed. A finite
union of regularly open sets is called \(\pi \)-open set and a finite intersection of regular
closed sets is called \(\pi \)-closed set. It is obvious that
an intersection of two \(\pi \)-closed sets need not be \(\pi \)-closed. A finite
union (intersection) of \(\pi \)-closed sets is \(\pi \)-closed, but the infinite union (intersection)
of \(\pi \)-closed sets need not be \(\pi \)-closed (See [11]). A point \(x \in X \) is called a
\(\theta \)-limit point (respectively \(\delta \)-limit point) [21] of \(A \) if every closed (respectively
regularly open) neighbourhood of \(x \) intersects \(A \). Let \(cl_\theta A \) (respectively \(cl_\delta A \))
denotes the set of all \(\theta \)-limit point (respectively \(\delta \)-limit point) of \(A \). The set \(A \) is called \(\theta \)-closed (respectively \(\delta \)-closed) if \(A = cl_\theta A \) (respectively \(A = cl_\delta A \)). The complement of a \(\theta \)-closed (respectively \(\delta \)-closed) set will be referred to as a \(\theta \)-open (respectively \(\delta \)-open) set. The family of \(\theta \)-open sets as well as the family of \(\delta \)-open sets form topologies on \(X \). The topology formed by the set of \(\delta \)-open sets is the semiregularization topology whose basis is the family of
regularly open sets.

Let \(Y \) be a subspace of \(X \). A subset \(A \) of \(X \) is concentrated on \(Y \) [2] if \(A \)
is contained in the closure of \(A \cap Y \) in \(X \). A subset \(A \) of \(Y \) is said to be
strongly concentrated on \(Y \) [6] if \(A \subset \overline{(A \cap Y)^c} \). It is obvious that
every strongly concentrated set is concentrated. We say that \(X \) is normal on \(Y \) if
every two disjoint closed subsets of \(X \) concentrated on \(Y \) can be separated by
disjoint open neighbourhoods in \(X \) [2]. Similarly, \(X \) is said to be weakly normal on \(Y \) [6] if for every disjoint closed subsets \(A \) and \(B \) of \(X \) strongly concentrated
on \(Y \), there exist disjoint open sets in \(X \) separating \(A \) and \(B \) respectively.

A space \(X \) is called densely normal if there exists a dense subspace \(Y \) of \(X \)
such that \(X \) is normal on \(Y \) [2]. A topological space \(X \) is said to be weakly densely normal [6] if there exist a proper dense subspace \(Y \) of \(X \) such that \(X \) is weakly normal on \(Y \). It is easy to see that every densely normal space is
weakly densely normal and every weakly densely normal space is \(\kappa \)-normal. On
the other hand, the converses are not true, as were shown in [10] and [6].

Lemma 1.1. A subset \(A \) of a topological space \(X \) is \(\theta \)-open if and only if for
each \(x \in A \), there is an open set \(U \) such that \(x \in U \subset \overline{U} \subset A \).

Definition 1.2. A topological space \(X \) is said to be

(i) quasi-normal [23] if any two disjoint \(\pi \)-closed subsets \(A \) and \(B \) of \(X \)
there exist two open disjoint subsets \(U \) and \(V \) of \(X \) such that \(A \subset U \)
and \(B \subset V \).
(ii) \(\pi \)-normal [11] if for any two disjoint closed subsets \(A \) and \(B \) of \(X \) one of which is \(\pi \)-closed, there exist two open disjoint subsets \(U \) and \(V \) of \(X \) such that \(A \subset U \) and \(B \subset V \).

(iii) \(\Delta \)-normal [9] if every pair of disjoint closed sets one of which is \(\delta \)-closed are contained in disjoint open sets.

(iv) weakly \(\Delta \)-normal [9] if every pair of disjoint \(\delta \)-closed sets are contained in disjoint open sets.

(v) \(\theta \)-normal [12] if every pair of disjoint \(\theta \)-closed sets one of which is \(\theta \)-closed are contained in disjoint open sets;

(vi) weakly \(\theta \)-normal [12] if every pair of disjoint \(\theta \)-closed sets are contained in disjoint open sets;

(vii) functionally \(\theta \)-normal [12] if for every pair of disjoint closed sets \(A \) and \(B \) one of which is \(\theta \)-closed there exists a continuous function \(f : X \to [0,1] \) such that \(f(A) = 0 \) and \(f(B) = 1 \).

(xvi) \(\Delta \)-regular [9] if for every closed set \(F \) and each open set \(U \) containing \(F \), there exist regular open sets \(V \) such that \(F \subset V \subset U \).

2. Weakly \(\kappa \)-normal spaces

Definition 2.1. A \(\theta \)-closed set \(A \) is said to be a regularly \(\theta \)-closed set if \(\text{int} A = A \). The complement of a regularly \(\theta \)-closed set will be regularly \(\theta \)-open.

Clearly every regularly \(\theta \)-closed set is regularly closed as well as \(\theta \)-closed but the converse need not be true.

Example 2.2. Let \(X \) be the set of positive integers. Define a topology on \(X \) by taking every odd integer to be open and a set \(U \subset X \) is open if for every
even integer \(p \in U \), the predecessor and the successor of \(p \) are also in \(U \). Here the set \(\{2k, 2k + 1, 2k + 2 : k \in \mathbb{Z}^+\} \) is a regularly closed set which is not \(\theta \)-closed.

Example 2.3. Let \(X \) denote the interior of the unit square \(S \) in the plane together with the points \((0, 0)\) and \((1, 0)\), i.e. \(X = S^0 \cup \{(0, 0), (1, 0)\} \). Every point in \(S^0 \) has the usual Euclidean neighbourhoods. The points \((0, 0)\) and \((1, 0)\) have neighbourhoods of the form \(U_n \) and \(V_n \) respectively, where, \(U_n = \{(0, 0)\} \cup \{(x, y) : 0 < x < 1/2, 0 < y < 1/n\} \) and \(V_n = \{(1, 0)\} \cup \{(x, y) : 1/2 < x < 1, 0 < y < 1/n\} \). Clearly, the sets \(\{(0, 0)\} \) and \(\{(1, 0)\} \) are \(\theta \)-closed but not regularly \(\theta \)-closed.

Definition 2.4. A topological space \(X \) is said to be weakly \(\kappa \)-normal if for every pair of disjoint regularly \(\theta \)-closed sets \(A \) and \(B \) there exist disjoint open sets \(U \) and \(V \) such that \(A \subset U \) and \(B \subset V \).

From the definitions it is obvious that every \(\kappa \)-normal space is weakly \(\kappa \)-normal and every weakly \(\theta \)-normal space is weakly \(\kappa \)-normal. The following diagram illustrates the interrelations that exist between weakly \(\kappa \)-normal spaces and variants of normality that exist in literature. But none of the implications below is reversible (See [7], [9], [11], [12], [14], [18] and examples below).

![Diagram](attachment:image.png)

Example 2.5. The space defined in Example 2.2 is weakly \(\kappa \)-normal but not \(\kappa \)-normal.

Example 2.6. The example of a Tychonoff \(\kappa \)-normal space which is not densely normal was given by Just and Tartir [10]. Since every regular space is \(\theta \)-regular [12], this space is \(\theta \)-regular but not normal. Thus the space is not weakly \(\theta \)-normal as every \(\theta \)-regular, weakly \(\theta \)-normal space is normal [12].
A decomposition of normality via a generalization of κ-normality

Theorem 2.7. A topological space X is weakly κ-normal if and only if for every regularly θ-closed set A and a regularly θ-open set U containing A there is an open set V such that $A \subset V \subset \overline{V} \subset U$.

Proof. Let X be a weakly κ-normal space and U be a regularly θ-open set containing a regularly θ-closed set A. Then A and $X - U$ are disjoint regularly θ-closed sets in X. Since X is weakly κ-normal, there are disjoint open sets V and W containing A and $X - U$, respectively. Since $X - W$ is closed, $A \subset V \subset X - W \subset U$. Conversely, let A and B be two disjoint regularly θ-closed sets in X. Then $U = X - B$ is a regularly θ-open set containing the regularly θ-closed set A. Thus by the hypothesis there exists an open set V such that $A \subset V \subset \overline{V} \subset U$. Then V and $X - V$ are disjoint open sets containing A and B, respectively. Hence X is weakly κ-normal. \Box

Theorem 2.8. Let X be a finite topological space. For a subset A of X, the following statements are equivalent.

(a) A is clopen.
(b) A is θ-closed.
(c) A is θ-open.

Proof. The implication (a) \implies (b) is obvious. To prove (b) \implies (a), let A be a closed subset of X. Then $(X - A)$ is θ-open in X. By Lemma 1.3.4, for each $x \in X - A$ there exists an open set U_x containing x such that $x \in U_x \subset \overline{U_x} \subset X - A$. Since X is finite, $\bigcup_{x \in X - A} U_x = X - A$, is the union of finitely many closed sets and hence closed. Thus A is open. By hypothesis A is θ-closed and hence closed. Consequently, A is clopen. The proofs of (a) \implies (c) and (c) \implies (a) are similar and hence omitted. \Box

From the above result the following observation is obvious.

Remark 2.9. Every finite topological space is weakly κ-normal whereas finite topological spaces need not be κ-normal.

Theorem 2.10 ([13]**). A space X is almost regular if and only if for every open set U in X, $\text{int}\overline{U}$ is θ-open.

Theorem 2.11. In an almost regular space, the following statements are equivalent.

(a) X is κ-normal.
(b) X is weakly κ-normal.

Proof. The proof of (a) \implies (b) directly follows from definitions. To prove (b) \implies (a), let X be an almost regular, weakly κ-normal space. Let A and B be two disjoint regularly closed sets in X. By Theorem 2.10, A and B are disjoint regularly θ-closed sets in X. Thus by weak κ-normality of X, there exist disjoint open sets separating A and B. Hence X is κ-normal. \Box

Theorem 2.12. In an almost regular space, every π-closed set is θ-closed.
Proof. Let X be an almost regular space and let $A \subset X$ be π-closed in X. Thus A is finite intersection of π-closed sets in X. Since in an almost regular space every regularly closed set is θ-closed [16] and finite intersection of θ-closed sets is θ-closed [21], A is θ-closed. □

Theorem 2.13. Every almost regular, weakly θ-normal space is quasi normal.

Proof. Let X be an almost regular, weakly θ-normal space. Let A and B be two disjoint π-closed sets in X. By Theorem 2.12, A and B are disjoint θ-closed sets which can be separated by disjoint open set as X is weakly θ-normal. □

Theorem 2.14. Every almost regular, θ-normal space is π-normal.

It is well known that every compact Hausdorff space is normal. However, in the absence of Hausdorffness or regularity a compact space may fail to be normal. Thus it is useful to know which topological property weaker than Hausdorffness with compactness implies normality. The property of being a T_1 space fails to do the job since the cofinite topology on an infinite set is a compact T_1 space which is not normal. However, it is well known that Every compact R_0-space is normal (See [17]). In [12], it is shown that every compact space in particular every paracompact space in absence of any separation axioms is θ-normal. It is also known that every Lindelöf spaces need not be κ-normal. However, by the following theorem of [12] it follows that every Lindelöf space is weakly κ-normal. Similarly, almost compactness need not implies κ-normality, but by Theorem of [12], every almost compact space is weakly κ-normal.

Theorem 2.15 ([12]). Every Lindelöf space is weakly θ-normal.

Corollary 2.16. Every Lindelöf space is weakly κ-normal.

Corollary 2.17. Every almost regular, Lindelöf space is κ-normal.

Proof. The prove immediately follows from Theorem 2.11, since in an almost regular space every weakly κ-normal space is κ-normal. □

Theorem 2.18 ([12]). Every almost compact space is weakly θ-normal.

Corollary 2.19. Every almost compact space is weakly κ-normal.

Corollary 2.20. Every almost regular, almost compact space is κ-normal.

Proof. The prove immediately follows from Theorem 2.11, since in an almost regular space every weakly κ-normal space is κ-normal. □

Remark 2.21. Corollary 2.17 and Corollary 2.20 were independently proved in [18]. In contrary to the above results the following example establishes that Lindelöf spaces need not be κ-normal and almost compactness need not imply κ-normality.

Example 2.22. Let X be the set of positive integers with the topology as defined in Example 2.2 and $Y = \{1, 2, 3, ..., 11\}$. Then the subspace topology on Y is compact but not κ-normal as disjoint regularly closed sets $\{2, 3, 4\}$ and $\{6, 7, 8\}$ can not be separated by disjoint open sets.
Definition 2.23 ([13]). A space X is said to be θ-compact if every open covering of X by θ-open sets has a finite subcollection that covers X.

The following result is useful to show that every almost regular, θ-compact space is κ-normal as well as weakly θ-normal.

Theorem 2.24 ([16]). Let $A \subset X$ be θ-closed and let $x \notin A$. Then there exist regular open sets which separate x and A.

Theorem 2.25. In an almost regular space, every θ-compact space is weakly θ-normal.

Proof. Let X be an almost regular θ-compact space. Let A and B be any two disjoint θ-closed subsets of X. By Theorem 2.24, for every $a \in A$, there exist disjoint regularly open sets U_a and V_a containing a and B respectively. Since X is almost regular, U_a and V_a are disjoint θ-open sets containing a and B. Now the collection $\{U_a : a \in A\}$ is a θ-open cover of A. Then $A \subset \bigcup_{a \in A} U_a = O$.

Since arbitrary union of θ-open sets is θ-open, $X - O = D$ is θ-closed. Since A is a θ-closed set disjoint from D, by Theorem 2.24, for every $d \in D$, there exist disjoint regularly open sets S_d and T_d containing A and d respectively. Again by almost regularity of X, T_d is a θ-open set which is disjoint from A. Now the collection $U = \{U_a : a \in A\} \cup \{T_d : d \in D\}$ is a θ-open covering of X. By θ-compactness of X, $\text{mathcal}U$ has a finite subcollection V which covers X. Let the members of V which intersects A be W. Each member of W is of the form U_a for some $a \in A$ as for each $d \in D$, $T_d \cap A = \phi$. Suppose $W = \{U_{a_i} : i = 1, 2, 3, ..., n\}$. Then $\bigcap_{i=1}^{n} U_{a_i} = U$ and $\bigcap_{i=1}^{n} V_{a_i} = V$ are disjoint open sets containing A and B respectively. Hence X is weakly θ-normal. □

Corollary 2.26. In an almost regular space, every θ-compact space is weakly κ-normal.

Proof. The proof immediately follows from the fact that every θ normal space is weakly κ-normal. □

Corollary 2.27. In an almost regular space, every θ-compact space is κ-normal.

Proof. The proof immediately follows from Theorem 2.11. □

Corollary 2.28. In an almost regular space, every almost compact space is weakly κ-normal.

Proof. The proof is immediate as every almost compact space is θ-compact [13]. □

3. Decompositions of normality

Theorem 3.1. An T_1-space is almost normal if and only if it is almost β-normal and weakly κ-normal.
Proof. Necessary part is obvious. Conversely, let X be a T_1-almost β normal, weakly κ-normal space. Since X is T_1-almost β-normal, by Theorem 2.9 of [3], X is almost regular. So by Theorem 2.11, X is κ-normal. Hence X is almost normal as every almost β-normal, κ-normal space is almost normal [3]. □

Corollary 3.2. An T_1 space is normal if and only if it is almost β-normal, weakly κ-normal and semi-normal.

Proof. The prove follows from the result that every almost normal, semi normal space is normal [18]. □

Definition 3.3. A space X is said to be strongly seminormal if for every closed set A contained in an open set U there exists a regularly θ-open set V such that $A \subset V \subset U$.

Theorem 3.4. Every normal space is strongly seminormal.

Proof. Let A be a closed set and U be an open set containing A. Let $B = X - U$. Then A and B are disjoint closed sets in X. By Urysohn’s lemma there exists a continuous function $f : X \to [0,1]$ such that $f(A) = 0$ and $f(B) = 1$. Let $V = f^{-1}(0,1/2)$ and $W = f^{-1}(1/2,1]$. Then $A \subset V \subset X - W \subset U$. Thus $A \subset V \subset V' \subset X - W \subset U$. We claim that V' is a regularly θ-open set. V' is regularly open, only we have to show that V' is θ-open. Let $x \in V'$. Then $f(x) \in (0,1/2)$. So there is a closed neighbourhood N of $f(x)$ contained in $[0,1/2)$. Let $U_x = (f^{-1}(N))^\circ$. Then $x \in U_x \subset f^{-1}(N) \subset V'$. By Lemma 1.1, V' is θ-open. Hence X is strongly seminormal. □

Theorem 3.5. Every strongly seminormal space is seminormal.

Theorem 3.6. Every strongly seminormal space is θ-regular.

The following implications are obvious but none of these is reversible.

![Implications Diagram]

Example 3.7. Let X be the set of positive integers with the topology as defined in Example 2.2, then X is seminormal but not strongly seminormal.

Example 3.8. The space given in [10] by Just and Tartir is an example of a Tychonoff κ-normal space which is not densely normal. Since every seminormal κ-normal space is normal [18], thus becoming densely normal, this space is not seminormal but is θ-regular as every regular space is θ-regular.

Theorem 3.9. A space X is normal if and only if it is strongly seminormal and weakly κ-normal.
A decomposition of normality via a generalization of \(\kappa \)-normality

Proof. The necessary part i.e., a normal space is strongly seminormal as well as weakly \(\kappa \)-normal directly follows from the definition. Conversely, let \(X \) be a strongly seminormal and weakly \(\kappa \)-normal space. let \(A \) and \(B \) be two disjoint closed sets in \(X \). Thus \(A \) is a closed set contained in an open set \(U = X - B \). Since \(X \) is strongly seminormal, there exists an regularly \(\theta \)-open set \(V \) such that \(A \subset V \subset U \). Now \(X - V \) is a regularly \(\theta \)-closed set contained in an open set \(X - A \). Again by strong seminormality of \(X \), there exists a regularly \(\theta \)-open set \(W \) such that \(X - V \subset W \subset X - A \). Thus \(X - V \) and \(X - W \) are two disjoint regularly \(\theta \)-closed sets in \(X \) containing \(B \) and \(A \) respectively. By weak \(\kappa \)-normality of \(X \), there exist two disjoint open sets \(O \) and \(P \) separating \(X - W \) and \(X - V \). Hence \(X \) is normal. \(\square \)

Corollary 3.10. In the class of strongly seminormal spaces, the following statements are equivalent.

(a) \(X \) is normal.
(b) \(X \) is \(\Delta \)-normal.
(c) \(X \) is \(\text{wf} \Delta \)-normal.
(d) \(X \) is weakly \(\Delta \)-normal.
(e) \(X \) is functionally \(\theta \)-normal.
(f) \(X \) is \(\theta \)-normal.
(g) \(X \) is weakly functionally \(\theta \)-normal.
(h) \(X \) is weakly \(\text{ quasi} \)-normal.
(i) \(X \) is \(\pi \)-normal.
(j) \(X \) is quasi \(\text{ normal} \).
(k) \(X \) is almost normal.
(l) \(X \) is \(\kappa \)-normal.
(m) \(X \) is weakly \(\kappa \)-normal.

Remark 3.11. In [9], it is shown that in the class of \(\Delta \)-regular spaces statements (a)-(d) of Corollary 3.10 are equivalent and in the class of \(\theta \)-regular spaces statements (a)-(h) are equivalent.

References
