On paracompact spaces and projectively inductively closed functors

T. F. Zhuraev

ABSTRACT. In this paper we introduce a notion of projectively inductively closed functor (p.i.c.-functor). We give sufficient conditions for a functor to be a p.i.c.-functor. In particular, any finitary normal functor is a p.i.c.-functor. We prove that every preserving weight p.i.c.-functor of a finite degree preserves the class of stratifiable spaces and the class of paracompact \(\sigma\)-spaces. The same is true (even if we omit a preservation of weight) for paracompact \(\Sigma\)-spaces and paracompact \(p\)-spaces.

2000 AMS Classification: 54D18, 54B30.
Keywords: stratifiable space, paracompact \(\sigma\)-space, paracompact \(\Sigma\)-space, paracompact \(p\)-space, projectively inductively closed functor.

1. Introduction

By \(Tych\) we denote the category of all Tychonoff spaces and all their continuous functions. A Hausdorff compact space is called a compact space or just a compactum. By \(Comp\) we denote the full subcategory of \(Tych\), whose objects are compacta.

Recall that a covariant functor \(F: Comp \to Comp\) is said to be normal \([17]\) if it satisfies the following properties:

1. preserves the empty set and singletons, i.e., \(F(\emptyset) = \emptyset\) and \(F(\{1\}) = \{1\}\), where \(\{k\} (k \geq 0)\) denotes the set \(\{0, 1, \ldots, k-1\}\) of nonnegative integers smaller than \(k\). In this notation \(0 = \{\emptyset\}\).
2. is monomorphic, i.e., for any (topological) embedding \(f: A \to X\), the mapping \(F(f): F(A) \to F(X)\) is also an embedding.
3. is epimorphic, i.e., for any surjective mapping \(f: X \to Y\), \(F(f): F(X) \to F(Y)\) is also surjective.
4. continuous, i.e., for any inverse spectrum \(S = \{X_\alpha; \pi^\alpha_\beta: \alpha \in A\}\) of compact spaces, the limit \(f: F(\lim S) \to \lim F(S)\) of the mappings \(F(\pi_\alpha)\),
where $\pi_\alpha : \lim S \to X_\alpha$ are the limiting projections of the spectrum S, is a homeomorphism.

(5) preserves intersections, i.e., for any family $\{A_\alpha : \alpha \in A\}$ of closed subsets of a compact space X, the mapping $F(i) : \cap \{F(A_\alpha) : \alpha \in A\} \to F(X)$ defined by $F(i)(x) = F(i_\alpha)(x)$, where $i_\alpha : A_\alpha \to X$ is the identity embeddings for all $\alpha \in A$, is an embedding.

(6) preserves preimages, i.e., for any mapping $f : X \to Y$ and an arbitrary closed set $A \subset Y$, we have $F(f^{-1}(A)) = (F(f))^{-1}(F(A))$.

(7) preserves weight, i.e., $w(F(X)) = w(X)$ for any infinite compactum X.

In what follows we shall use bigger than normal classes of functors. But any of them shall preserve empty set, intersections and be monomorphic. By \exp we denote the well-known hyperspace functor of non-empty closed subsets. This functor takes every (nonempty) compact space X to the set of all its nonempty closed subsets endowed with the (finite) Vietoris topology (see [9]), and a continuous mapping $f : X \to Y$ to the mapping $\exp(f) : \exp(X) \to \exp(Y)$, defined by $F(f)(A) = A$.

For a functor F and an element $a \in F(X)$, the support of a is defined as intersection of all closed sets $A \subset X$ such that $a \in F(A)$ (recall that we consider only monomorphic functors preserving intersections). This support we denote by $\text{supp}_{F(X)}(a)$. When it is clear what functor and space are meant, we denote the support of a merely by $\text{supp}(a)$.

A. Ch. Chigogidze [7] extended an arbitrary intersection-preserving monomorphic functor $F : \text{Comp} \to \text{Comp}$ to the category Tych by setting

$$F_{\beta}(X) = \{a \in F(\beta X) : \text{supp}(a) \subset X\}$$

for any Tychonoff space X. If $f : X \to Y$ is a continuous mapping of Tychonoff spaces and $\beta f : \beta X \to \beta Y$ is the (unique) extension of f over their Stone-Čech compactifications, then

$$F(\beta f)(F(\beta X)) \subset F_{\beta}(X).$$

The last inclusion is a corollary of a trivial fact

$$f(\text{supp}(a)) \supset \text{supp}(F(f)(a)).$$

Therefore, we can define the mapping

$$F_{\beta}(f) = F(\beta f)|X,$$

which makes F_{β} into a functor.

A. Ch. Chigogidze proved [7] that if a functor F has certain normality property, then F_{β} has the same property (modified when necessary). In what follows by a covariant functor $F : \text{Tych} \to \text{Tych}$ we shall mean a functor of type F_{β}. For such a functor F and any compact space X the space $F(X)$ is a compact space.

For a set A by $|A|$ we denote the cardinality of A. For a subset A of a space X by \overline{A}^X we denote the closure of A in X.
In this paper we introduce a notion of *projectively inductively closed* functor (p.i.c.-functor). We give sufficient conditions for a functor to be a p.i.c.-functor (Theorem 3.5). In particular, any finitary normal functor is a p.i.c.-functor (Corollary 3.6). We prove that every preserving weight p.i.c.-functor of a finite degree preserves the class of stratifiable spaces and the class of paracompact σ-spaces (Theorem 3.7). The same is true (even if we omit a preservation of weight) for paracompact Σ-spaces and paracompact p-spaces (Theorem 3.8).

All spaces are assumed to be Tychonoff, and all mappings, continuous. Any additional information on general topology and covariant functors one can find, for example, in ([8], [9], [17]).

2. Preliminaries

In this section we recall some definitions and facts, which will be useful in establishing our main results (see Section 3).

Definition 2.1 ([2]). A *network* for a space X is a collection \mathcal{N} of subsets of X such that whenever $x \in U$ with U open, there exists $F \in \mathcal{N}$ with $x \in F \subset U$.

An elementary corollary of this definition is that every base of a space X is a network of X.

A family \mathcal{A} of subsets of X is said to be *σ-locally finite* if it is a union of countably many families \mathcal{A}_n which are locally finite in X.

Definition 2.2 ([16]). A topological space X is called a *σ-space*, if it has a σ-locally finite network.

Remark 2.3. A rather simple observation of the definition 2.2 shows us that every closed subset of a σ-space is a σ-space.

Proposition 2.4 ([11]). *Every closed image of a σ-space is a σ-space.*

A well-known theorem of E. Michael [13] states that every closed image of a paracompact space is a paracompact space. So, from Proposition 2.4 we get

Theorem 2.5 ([11]). *Every closed image of a paracompact σ-space is a paracompact σ-space.*

Theorem 2.6 ([11]). *A countable product of paracompact σ-spaces is a paracompact σ-space.*

In 1969 K. Nagami [15] introduced more general class than class of σ-spaces.

Definition 2.7. A space X is a *Σ-space* if there exists a σ-discrete collection \mathcal{N}, and a cover c of X by closed countably compact sets such that, whenever $C \in c$ and $C \subset U$ with open U, then $C \subset F \subset U$ for some $F \in \mathcal{N}$.

Clearly, from Definitions 2.1 and 2.7 we have.

Proposition 2.8. *Every perfect preimage of a σ-space is a Σ-space. In particular, every σ-space is a Σ-space.*

Proposition 2.9. *Every closed subspace Y of a Σ-space X is a Σ-space.*
Indeed, evidently, that the families \(\mathcal{N} \mid Y \) and \(c \mid Y \), where \(\mathcal{N} \) and \(c \) are from Definition 2.7, satisfy Definition 2.7 for \(Y \).

K. Nagami [15] has shown that the class of \(\Sigma \)-spaces is strictly larger than the class of perfect preimages of \(\sigma \)-spaces. On the other hand, the class of perfect preimages of \(\sigma \)-spaces is much larger than the class of \(\sigma \)-spaces. For example, every compact \(\sigma \)-space is metrizable.

Paracompact \(\Sigma \)-spaces behave nicely with respect to countable products and perfect images.

Proposition 2.10 ([15]). The countable product of paracompact \(\Sigma \)-spaces is a paracompact \(\Sigma \)-space.

Proposition 2.11 ([15]). Every perfect image of a paracompact \(\Sigma \)-space is a paracompact \(\Sigma \)-space.

The class of paracompact \(p \)-spaces in sense of A. V. Arhangel’-skii is a proper subclass of paracompact \(\Sigma \)-spaces.

Definition 2.12 ([3]). A space \(X \) is called a \(p \)-space if there exists a countable family \(u_n \) such that:

1) \(u_n \) consists of open subsets of \(\beta X \);
2) \(X \subset \cup u_n \) for each \(n \);
3) \(\cap_n st(x, u_n) \subset X \) for every \(x \in X \).

Here for a family \(v \) of subsets of a space \(Y \) by \(st(y, v) \) we denote the set \(\cup \{ V \in v : y \in V \} \).

Theorem 2.13 ([3]). The class of paracompact \(p \)-spaces coincides with the class of perfect preimages of metrizable spaces.

Corollary 2.14. Every paracompact \(p \)-space is a perfect preimage of a paracompact \(\sigma \)-space and, consequently, is a paracompact \(\Sigma \)-space.

Theorem 2.13 also yields

Corollary 2.15 ([3]). Every countable product of paracompact \(p \)-spaces is a paracompact \(p \)-space.

Proposition 2.16 ([3]). Every closed subspace of a paracompact \(p \)-space is a paracompact \(p \)-space.

Theorem 2.17 ([10]). Every perfect image of a paracompact \(p \)-space is a paracompact \(p \)-space.

Let us recall some more notions and facts.

Definition 2.18 ([6]). A space \(X \) is stratifiable if there is a function \(G \) which assigns to each \(n \in \omega \) and closed set \(H \subset X \), an open set \(G(n, H) \) containing \(H \) such that

1) if \(H \subset K \), then \(G(n, H) \subset G(n, K) \);
2) \(H = \cap_n G(n, H) \).
The class of stratifiable spaces was defined in 1961 by J.Ceder [6]. But he called these spaces by M_3-spaces. The latter form was proposed by C.R. Borges [5] in 1966.

In the definition of a stratifiable space we can also use the following additional condition:

(3) $G(n + 1, H) \subset G(n, H)$.

Indeed, we define new stratification G' by

$$G'(n, H) = \cap_{i \leq n} G(i, H).$$

The following dual characterization of stratifiable spaces is sometimes useful:

X is stratifiable if and only if for each open $U \subset X$ and $n \in \omega$ one can assign an open set U_n such that $U_n \subset U$, $U = \cup_n U_n$ and $U \subset V$ implies $U_n \subset V_n$.

To get this characterization from a function G satisfying definition 2.18, let $U_n = X \backslash G(n, X \backslash U)$. On the other hand, to get G from U_n’s let $G(n, X) = X \backslash \left(\bigcup_n (X \backslash H) \right)_n$.

From this characterization of stratifiable spaces and Michael’s theorem [14] characterizing a paracompact space by σ-cushioned coverings, we get

Theorem 2.19 ([6]). Stratifiable spaces are paracompact.

Corollary 2.20 ([5]). Stratifiable spaces are perfectly normal.

Indeed, every stratifiable space is normal in view of Theorem 2.19. On the other hand, each closed subset of X is a G_δ-set by Definition 2.18.

Theorem 2.21 ([12]). Every stratifiable space is a σ-space.

As a corollary of Theorems 2.19 and 2.21 we get

Theorem 2.22. Every stratifiable space is a paracompact σ-space.

Theorem 2.23 ([5]). Every subspace of a stratifiable space is stratifiable.

Theorem 2.24 ([5]). A countable product of stratifiable spaces is stratifiable.

Theorem 2.25 ([5]). Stratifiable spaces are preserved by closed mappings.

From Theorem 2.25 we get

Corollary 2.26. An image of a metrizable space under closed mapping is stratifiable. In particular, every metrizable space is stratifiable.

Going back to functors $F: \text{Comp} \to \text{Comp}$, we, evidently, have

(2.1) $a \in F(\text{supp}(a))$.

If a functor F preserves preimages, then F preserves supports [17], i.e.

(2.2) $f(\text{supp}(a)) = \text{supp}(F(f)(a))$.

The property (2.2) can be conversed.

Proposition 2.27 ([17]). Any monomorphic preserving intersections functor preserves supports if and only if it preserves preimages.
Definition of the functor \mathcal{F} and property (2.2) imply that
\begin{equation}
(2.3) \quad f(\text{supp}_{\mathcal{F}}(X))(a) = \text{supp}_{\mathcal{F}^Y}(Y) \mathcal{F}_Y(f)(a)
\end{equation}
for any preimage preserving functor $\mathcal{F}: \text{Comp} \to \text{Comp}$, continuous mapping $f: X \to Y$, and $a \in \mathcal{F}_Y(X)$.

Now we recall one construction given by V. N. Basmanov [4]. Let $\mathcal{F}: \text{Comp} \to \text{Comp}$ be a functor. By $C(X,Y)$ we denote the space of all continuous mappings from X to Y with compact-open topology.

In particular, $C(\{k\},Y)$ is naturally homeomorphic to the k-th power Y^k of the space Y; the homeomorphism takes each mapping $\xi: \{k\} \to Y$ to the point $(\xi(0), \ldots, \xi(k-1)) \in Y^k$.

For a functor \mathcal{F}, compact space X, and a positive integer k, V. N. Basmanov [4] defined the mapping
\[
\pi_{\mathcal{F},X,k}: C(\{k\},X) \times \mathcal{F}(\{k\}) \to \mathcal{F}(X)
\]
by
\[
\pi_{\mathcal{F},X,k}(\xi,a) = \mathcal{F}(\xi)(a)
\]
for any $\xi \in C(\{k\},X)$ and $a \in \mathcal{F}(\{k\})$.

When it is clear what functor \mathcal{F} and what space X are meant, we omit the subscripts \mathcal{F} and X and write $\pi_{X,k}$ or π_k instead of $\pi_{\mathcal{F},X,k}$.

According to Shcepin’s theorem ([17], Theorem 3.1), the mapping
\[
\mathcal{F}: C(Z,Y) \to \mathcal{F}(\mathcal{F}(Z),\mathcal{F}(Y))
\]
is continuous for any continuous functor \mathcal{F} and compact spaces Z and Y. This implies the following assertion.

Proposition 2.28 ([4]). If \mathcal{F} is a continuous functor, X is a compact space, and k is a positive integer, then the mapping $\pi_{\mathcal{F},X,k}$ is continuous.

Let \mathcal{F}_k be a subfunctor of a functor \mathcal{F} defined as follows. For a compact space X, $\mathcal{F}_k(X)$ is the image of the mapping $\pi_{\mathcal{F},X,k}$ and for a mapping $f: X \to Y$, $\mathcal{F}_k(f)$ is the restriction of $\mathcal{F}(f)$ to $\mathcal{F}_k(X)$. Denote by $\mathcal{T}: C(\{k\},X) \to (C\{k\},Y)$ the mapping which takes ξ to composition $f \circ \xi$. It is easy to see that
\begin{equation}
(2.4) \quad \pi_{Y,k} \circ \mathcal{T} \times \text{id}_{\mathcal{F}(\{k\})} = \mathcal{F}(f) \circ \pi_{X,k}.
\end{equation}

Therefore, $\mathcal{F}(f)(\mathcal{F}_k(X)) \subset \mathcal{F}_k(Y)$. Hence, \mathcal{F}_k is a functor.

A functor \mathcal{F} is called a **functor of degree** n, if $\mathcal{F}_n(X) = \mathcal{F}(X)$ for any compact space X, but $\mathcal{F}_{n-1}(X) \neq \mathcal{F}(X)$ for some X. The next assertion (Proposition 2.29) is Shcepin’s definition of the functor \mathcal{F}_k. But using Basmanov’s definition we should prove it. One can find the proof in [28].

Proposition 2.29. For any continuous functor \mathcal{F} and a compact space X, we have
\[
\mathcal{F}_k(X) = \{a \in \mathcal{F}(X) : |\text{supp}(a)| \leq k\}.
\]

Corollary 2.30. For any compact space X, we have
\[
\text{exp}_k(X) = \{a \in \exp(X) : |a| \leq k\}.
\]
The definition of a support and the property (2.1) imply.

Proposition 2.31. For a functor \mathcal{F}, a compact space X, and a closed subset A of X,

\[\mathcal{F}(A) = \{ a \in \mathcal{F}(X) : \text{supp}(a) \subseteq A \}. \]

For a Tychonoff space X, a functor $\mathcal{F} : \text{Comp} \to \text{Comp}$, and a positive integer k, we put

\[\mathcal{F}_k(X) = \pi_{\mathcal{F}, \beta X, k}(C(\{k\}), X) \times \mathcal{F}(\{k\}) \]

and denote the restriction of $\pi_{\mathcal{F}, \beta X, k}$ to $C(\{k\}) \times \mathcal{F}(\{k\})$ by $\pi_{\mathcal{F}, X, k}$. If $f : X \to Y$ is a continuous mapping, then

\[\mathcal{F}(\beta f)(\mathcal{F}_k(X)) \subseteq \mathcal{F}_k(Y), \]

in view of the equality (2.4) for the mapping βf. Therefore, setting

\[\mathcal{F}_k(f) = \mathcal{F}_k(\beta f)|\mathcal{F}(X), \]

we obtained a mapping

\[\mathcal{F}_k(f) : \mathcal{F}_k(X) \to \mathcal{F}_k(Y). \]

Thus, we have defined the covariant functor

\[\mathcal{F}_k : \text{Tych} \to \text{Tych}, \]

that extends the functor $\mathcal{F}_k : \text{Comp} \to \text{Comp}$ to the category Tych. Proposition 2.29 implies the following assertion.

Proposition 2.32 ([18]). If $\mathcal{F} : \text{Comp} \to \text{Comp}$ is a continuous functor, then $\mathcal{F}_k : \text{Tych} \to \text{Tych}$ is a subfunctor of the functor \mathcal{F}_β, and

\[\mathcal{F}_k(X) = \mathcal{F}_\beta(X) \cap \mathcal{F}_k(\beta X). \]

Proposition 2.33 ([18]). For a compact space X, a continuous functor \mathcal{F} and a positive integer k, the set $\mathcal{F}_k(X)$ is closed in $\mathcal{F}(X)$.

Propositions 2.32 and 2.33 imply

Proposition 2.34 ([18]). For a Tychonoff space X, a continuous functor \mathcal{F}, and a positive integer k, the set $\mathcal{F}_k(X)$ is closed in $\mathcal{F}_\beta(X)$.

Corollary 2.35. For a Tychonoff space X, a continuous functor \mathcal{F}, and a positive integer k, the set $\mathcal{F}_k(X)$ is closed in $\mathcal{F}_{k+1}(X)$.

3. Projectively inductively closed functors

We start recalling that a functor \mathcal{F} is said to be **finitely open** [18], if the set $\mathcal{F}_k(\{k+1\})$ is open in $\mathcal{F}(\{k+1\})$ for any positive integer k. The dual for this definition states that $\mathcal{F}(\{k+1\}) \setminus \mathcal{F}_k(\{k+1\})$ is closed in $\mathcal{F}(\{k+1\})$.

Remark 3.1. As an example of a finitely open functor one can take any finitary functor \mathcal{F}, i.e., a functor \mathcal{F} such that $\mathcal{F}(\{k\})$ is finite for any positive integer k. In particular, the hyperspace functor exp is a finitary and, consequently, a finitely open functor.
Lemma 3.2. For any continuous, preserving preimages functor \mathcal{F}_β, the mapping $\pi_{\mathcal{F}_\beta,X,1}$ is a homeomorphism.

Proof. At first we show that $\pi_{\mathcal{F}_\beta,X,1}$ is a bijective mapping. In view of (2.3) for any $\xi \in C(\{1\}, X)$ and $a \in \mathcal{F}(\{1\})$ we have $\mathcal{F}(\xi)(a) = \xi(0)$, since we consider functors preserving empty set. Since the set $\{1\}$ consists of one point 0, every mapping $\xi: \{1\} \to X$ is a monomorphism. But we consider only monomorphic functors. Hence, the mapping $\mathcal{F}(\xi)$ is a monomorphism. On the other hand, $\pi_{\mathcal{F}_\beta,X,1}(\xi,a) = \xi(0)$. Consequently, π_1 is an injective mapping. Furthere, the mapping $\pi_{\mathcal{F}_\beta,X,k}: C(\{k\}, X) \times \mathcal{F}(\{k\}) \to \mathcal{F}_k(X)$ is epimorphic for any positive integer k, in particular, for $k = 1$ by definition of $\mathcal{F}(X)$. Thus, π_1 is a bijective mapping.

Hence, π_1 is a homeomorphism for a compact space X (π_1 is continuous in view of Proposition 2.28). If X is a Tychonoff space, then by definition, the mapping $\pi_{\mathcal{F}_\beta,X,k}$ is a restriction of $\pi_{\mathcal{F}_\beta,X,k}$ to $C(\{k\}, X) \times \mathcal{F}(\{k\})$. Therefore, the mapping $\pi_{\mathcal{F}_\beta,X,1}$ is a homeomorphism as a restriction of the homeomorphism $\pi_{\mathcal{F}_\beta,X,1}$ to a subset. The proof is complete. □

Definition 3.3. An epimorphism $f: X \to Y$ is called inductively closed if there exists a closed subset A of X such that $f(A) = Y$ and $f|A$ is a closed mapping.

Definition 3.4. A functor \mathcal{F}_β is said to be projectively inductively closed (p.i.c.) if the mapping $\pi_{\mathcal{F}_\beta,X,k}$ is inductively closed for any Tychonoff space X and positive integer k.

The next theorem gives us sufficient conditions for a functor \mathcal{F}_β to be projectively inductively closed (a p.i.c.-functor).

Theorem 3.5. Every continuous, monomorphic, finitely open functor $\mathcal{F}_\beta: \text{Tych} \to \text{Tych}$, that preserves empty set, intersections, and preimages is a p.i.c.-functor.

Proof. It is necessary to check, that for any Tychonoff space X and positive integer k, the mapping

$$\pi_{\mathcal{F}_\beta,X,k}: X^k \times \mathcal{F}(\{k\}) \to \mathcal{F}_k(X)$$

is inductively closed. We shall prove it by induction on k. If $k = 1$, the mapping $\pi_{\mathcal{F},X,1}$ is inductively closed, since it is a homeomorphism by Lemma 3.2.

Assume that our assertion is proved for all integers $k \leq l$. Let us prove it for $k = l + 1$. Fix some point $x_0 \in X^l$. Consider the embedding $i: X^l \to X^{l+1}$ defined as

$$i(x_1,\ldots,x_l) = (x_1,\ldots,x_l,x_0).$$

Define a mapping $j: \mathcal{F}(\{l\}) \to \mathcal{F}(\{l+1\})$ by the equality $j(a) = \mathcal{F}(h)(a)$, where $h: \{l\} \to \{l+1\}$ is an identical embedding, i.e., $h(m) = m$ for any
$m \leq l - 1$. Since F is a monomorphic functor, the mapping j is an embedding. Hence, we defined the embedding

$$e = i \times j : X^l \times F(\{l\}) \to X^{l+1} \times F(\{l+1\}).$$

It follows from definitions that

$$\pi F_{\beta,X,l+1} \circ e = \pi F_{\beta,X,l}.$$

From property (3.1) we get, that on the set $e(X^l \times F(\{l\}))$ the next equality holds:

$$\pi F_{\beta,X,l} = \pi F_{\beta,X,l+1} \circ e^{-1}.$$

Since the mapping $\pi F_{\beta,X,l}$ is inductively closed by an inductive assumption, there exists a closed subset A of $X^l \times F(\{l\})$ such that $\pi F_{\beta,X,l}(A) = F_l(X)$, and the mapping $\pi F_{\beta,X,l}|A$ is closed. Since the mapping e^{-1} is a homeomorphism on the set $e(A)$, equality (3.2) and Corollary 2.35 imply that

$$\pi F_{\beta,X,l+1}|A$$ is a closed mapping.

Moreover, it is clear, that

$$\pi F_{\beta,X,l+1}(A) = F_l(X).$$

Now we put

$$\Phi = F(\{l+1\}) \setminus F(\{l+1\}).$$

The set Φ is compact, because the functor F is finitely open. Now we define the sets

$$Z_0 = X^{l+1} \times \Phi$$ and

$$Z_1 = (\beta X)^{l+1} \times \Phi.$$

By f_i, $i < 2$, we denote restrictions of the mapping $\pi F_{\beta,X,l+1}$ to the sets Z_i. Let us show that

$$Z_0 = f_1^{-1}(f_1(Z_0)).$$

To verify this equality, we remark that the functor F_{β} preserves monomorphisms, intersections, and preimages. Hence, it preserves supports (look at (2.2)). Therefore,

$$\text{supp}(\pi_{l+1}(\xi, a)) = \xi(\text{supp}(a))$$ for any $\xi \in C(\{l+1\}, \beta X)$ and $a \in F(\{l+1\})$. But if $(\xi, a) \in Z_1$, then $\text{supp}(a) = \{l+1\}$. Consequently,

$$\text{supp}(f_1(\xi, a)) = \xi(\{l+1\}).$$

Hence,

$$Z_0 = \{(\xi, a) \in Z_1 : \xi(\{l+1\}) \subset X\}.$$

Thus, if $f_1(\xi_0, a_0) = f_1(\xi_1, a_1)$ and $(\xi_0, a_0) \in Z_0$, then $(\xi_1, a_1) \in Z_0$. Hence, equality (3.7) is verified.
Compactness of the set Z_1 and the equality (3.7) imply that the mapping $f_0: Z_0 \rightarrow f_0(Z_0)$ is closed.

Now we shall verify that

(3.11) \[f_0(Z_0) = f_1(Z_1) \cap F_{l+1}(X). \]

It is sufficient to check the inclusion \supset. Let $f_1(\xi, a) \in f_1(Z_1) \cap F_{l+1}(X)$. Then $X \supset \text{supp}
(f_1(\xi, a)) = \xi(l + 1)$ by (3.9). Consequently, $(\xi, a) \in Z_0$ according to (3.10). Thus, the equality (3.11) is checked.

This equality and compactness of $f_1(Z_1)$ imply that $f_0(Z_0)$ is closed in $F_{l+1}(X)$. Hence, the mapping $f_0: Z_0 \rightarrow F_{l+1}(X)$ is closed. Let $B = A_0 \cup Z_0$. Then the mapping

$\pi_{F_\beta, X, l+1}|B: B \rightarrow F_{l+1}(X)$

is closed as a union of closed mappings on two closed subsets A and Z_0.

To complete the proof, it suffices to check that

(3.12) \[f_0(Z_0) \supset F_{l+1}(X) \backslash F_l(X). \]

But this inclusion is a corollary of (3.11) and an evident inclusion

$f_1(Z_1) \supset F_{l+1}(X) \backslash F_l(X).$

The proof is complete. \(\square\)

Corollary 3.6. Every finitary normal functor, in particular the functor \exp_n, is a p.i.c.-functor.

Theorem 3.7. Let F_β be a weight preserving p.i.c.-functor of a finite degree m. Then F_β preserves the class of stratifiable spaces and the class of paracompact σ-spaces.

Proof. First we consider the case of stratifiable spaces. By Theorem 2.24 the space $X^m \times F_\beta\{m\}$ is stratifiable as a finite product of stratifiable spaces ($F_\beta\{m\}$ is stratifiable being a metrizable compact space, because F_β is a weight preserving functor). Since F_β is a p.i.c.-functor, there exists a closed subset A of $X^m \times F_\beta\{m\}$ such that $\pi_{F_\beta, X, m}(A) = F_\beta(X)$ and the mapping $\pi_{F_\beta, X, m}|A \rightarrow F_\beta(X)$ is closed. But every subspace of a stratifiable space is stratifiable in view of Theorem 2.23. Hence, A is a stratifiable space. Then the space $F_\beta(X)$ is stratifiable like an image of a stratifiable space under closed mapping (look at Theorem 2.25). \(\square\)

The proof of the assertion for paracompact σ-spaces repeats the previous proof. The necessary changings are the following: instead of Theorems 2.24, 2.23, and 2.25, we use Theorem 2.6, Remark 2.3, and Theorem 2.5 respectively.

By the same procedure we get

Theorem 3.8. Let F_β be a p.i.c.-functor of a finite degree. Then F_β preserves the class of paracompact Σ-spaces and the class of paracompact p-spaces.
Proof of this theorem repeats the proof of Theorem 3.7 for stratifiable spaces. The necessary changings are: 1) we don’t need that $\mathcal{F}_\beta(m)$ is metrizable; 2) instead of Theorems 2.24, 2.23, and 2.25, we use Propositions 2.10, 2.9, and 2.11 in the case of paracompact Σ-spaces; 3) in the case of paracompact p-spaces we use respectively Corollary 2.15, Proposition 2.16, and Theorem 2.17.

Corollary 3.6, Theorems 3.7, and 3.8 yield

Corollary 3.9. Every normal finitary functor of a finite degree, in particular the functor \exp_m, preserves the class of stratifiable spaces, the class of paracompact σ-spaces, and the class of paracompact Σ-spaces.

Remark 3.10. As for paracompact p-spaces, they are preserved by any normal functor \mathcal{F}_β (look at [1]).

References

Received April 2001
Revised October 2001
T. F. Zhuraev
Department of General Topology and Geometry
Mechanics and Mathematics Faculty
Moscow State University
Vorob’evy Gory, Moscow, 119899 Russia