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Abstract. In [7] some results concerning S-splitting, S-jointly con-
tinuous, D-splitting and D-jointly continuous topologies are considered,
where S and D are the Sierpinski space and the double-point space, re-
spectively. Here we generalize these results replacing the spaces S and
D by any finite space.
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1. Introduction.

By Y and Z we denote two fixed topological spaces and by tZ the topology
of Z. By C(Y,Z) we denote the set of all continuous maps of Y into Z. If τ
is a topology on the set C(Y,Z), then the corresponding topological space is
denoted by Cτ (Y,Z).

Let X be a space and F : X × Y → Z be a continuous map. By Fx, where
x ∈ X, we denote the continuous map of Y into Z, for which Fx(y) = F (x, y),
for every y ∈ Y . By F̂ we denote the map of X into the set C(Y,Z), for which
F̂ (x) = Fx for every x ∈ X.

Let G be a map of the space X into the set C(Y, Z). By G̃ we denote the
map of the space X × Y into the space Z, for which G̃(x, y) = G(x)(y) for
every (x, y) ∈ X × Y .

A topology t on C(Y, Z) is called splitting if for every space X, the continuity
of a map F : X×Y → Z implies that of the map F̂ : X → Ct(Y,Z). A topology
t on C(Y, Z) is called jointly continuous if for every space X, the continuity of
a map G : X → Ct(Y, Z) implies that of the map G̃ : X × Y → Z (see [5], [1],
[2] and [3]).

If in the above definitions it is assumed that the space X belongs to a given
family A of spaces, then the topology τ is called A−splitting (respectively,
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A−jointly continuous) (see [6]). In the present paper we shall considered only
the case A = {F}, where F is a space, and instead of A-splitting and A-jointly
continuous we write F-splitting and F-jointly continuous.

Let X be a space with a topology τ . We denote (see, for example, [8]) by
≤
τ

(respectively, by ∼τ ) a preorder (respectively, an equivalence relation) on
X defined as follows: if x, y ∈ X, then we write x ≤

τ

y (respectively, x∼τ y) if
and only if x ∈ ClX({y}) (respectively, x ∈ ClX({y}) and y ∈ ClX({x})). (By
ClX(Q) we denote the closure of a set Q in the space X).

On the set C(Y,Z) we denote a preorder ≤ (respectively, an equivalence
relation ∼ ) as follows: if g, f ∈ C(Y, Z), then we write g ≤ f (respectively,
g ∼ f) if g(y) ≤

τZ

f(y) (respectively, g(y) ∼τZ f(y)) for every y ∈ Y (see, for
example, [7]).

By S we denote the Sierpinski space, that is, the set {0, 1} equipped with
the topology τ(S) ≡ {∅, {0, 1}, {1}}, and by D the set {0, 1} with the trivial
topology. In [7] the notions of S-splitting and S-jointly continuous (respec-
tively, D-splitting and D-jointly continuous) topologies are characterized by
the above preorders (respectively, equivalence relations) on C(Y,Z). By the
trivial topology on a set X we mean the topology {∅, X}.

Let U be a quasi-uniformity on the space Z (see, for example, [4]). This
quasi-uniformity defines on the set C(Y, Z) a quasi-uniformity Q(U) as follows
(see [11]): the set of all subsets of C(Y,Z) of the form

(Y, U) = {(f, g) ∈ C(Y, Z)× C(Y, Z) : (f(y), g(y)) ∈ U, for every y ∈ Y },

where U ∈ U , is a basis for the quasi-uniformity Q(U). We denote by τQ(U)

(see [11]) the topology on C(Y, Z), which is defined by the quasi-uniformity
Q(U), that is: the subbasic neighborhoods of an arbitrary element f ∈ C(Y, Z)
in τQ(U) are of the form: (Y, U)[f ] = {g ∈ C(Y, Z) : (f, g) ∈ (Y, U)}, where
U ∈ U . In this case we shall say also that τQ(U) is generated by the quasi-
uniformity U .

Let O(Y ) be the family of all open sets of the space Y . The Scott topology
on O(Y ) (see, for example, [8]) is defined as follows: a subset IH of O(Y ) is
open if:

(α) the conditions U ∈ IH, V ∈ O(Y ), and U ⊆ V imply V ∈ IH, and
(β) for every collection of open sets of Y , whose union belongs to IH, there

are finitely many elements of this collection whose union also belongs to IH.
The Isbell topology τis on C(Y,Z) (see [9] and [10]) is the topology for which

the family of all sets of the form

(IH,U) = {f ∈ C(Y, Z) : f−1(U) ∈ IH},
where IH is Scott open in O(Y ) and U ∈ O(Z), is a subbasis.

The pointwise topology (see, for example, [3]) τp on C(Y, Z) is the topology
for which the family of all sets of the form
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({y}, U) = {f ∈ C(Y,Z) : f(y) ∈ U},
where y ∈ Y and U ∈ O(Z), is a subbasis.

The compact open (see [5]) topology τc on C(Y,Z) is the topology for which
the family of all sets of the form

(K,U) = {f ∈ C(Y, Z) : f(K) ⊆ U},
where K is a compact subset of Y and U ∈ O(Z), is a subbasis.

Below, we recall some well known results:
(1) The pointwise topology, the compact open topology and the Isbell topol-

ogy on C(Y, Z) are always splitting (see, for example, [1], [2], [3], [5], [9] and
[10]).

(2) The compact open topology on C(Y,Z) is jointly continuous if Y is
locally compact (see [5] and [2]).

(3) The Isbell topology on C(Y, Z) is jointly continuous if Y is corecompact
(see, for example, [9]).

(4) The topology τQ(U) is jointly continuous (see [11]).

2. F-splitting and F-jointly continuous topologies.

In the paper we denote by F a non-discrete space which is the set {0, 1, ..., n},
n > 0, equipped with an arbitrary fixed topology. By Uj , j = 0, 1, ..., n, we
denote the intersection of all open neighborhoods of j in F.

It is clear that if F is the discrete space, then every topology τ on C(Y, Z)
is F-splitting and F-jointly continuous.

Theorem 2.1. The trivial topology and, hence, every topology on the set
C(Y, Z) is F-jointly continuous if and only if the topology of Z is trivial.

Proof. Suppose that the topology of Z is trivial. Then for any topology τ on
C(Y, Z) and any continuous map G : F → Cτ (Y,Z), the map G̃ : F× Y → Z
is trivially continuous, that is τ is F-jointly continuous.

Conversely, suppose that the trivial topology τ on C(Y,Z) is F-jointly con-
tinuous. We prove that the topology of Z is trivial. Indeed, in the opposite
case, there exist two distinct elements z1, z2 of Z and an open subset U of
Z such that z1 ∈ U and z2 6∈ U . We consider the maps f, g ∈ C(Y, Z) such
that f(Y ) = {z1} and g(Y ) = {z2}. Denote by i, the element of F such that
Ui 6= {i}. Let G : F → Cτ (Y,Z) be a map such that G(i) = f and G(j) = g,
for every j ∈ F \ {i}. Since τ is trivial, the map G is continuous. Since τ
is F-jointly continuous, the map G̃ : F × Y → Z is also continuous. By the
definition of G̃, G̃(i, y) = G(i)(y) = f(y) = z1 ∈ U , y ∈ Y . Therefore for a
fixed y ∈ Y there exists an open neighborhood Vy such that G̃(Ui × Vy) ⊆ U .
Let j ∈ Ui \ {i}. Then, we have G̃(j, y) = G(j)(y) = g(y) = z2 6∈ U which is a
contradiction. Thus the topology of Z is trivial. �

Theorem 2.2. If the discrete topology, and hence, every topology on C(Y, Z)
is F-splitting, then Z is a T0 space.
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Proof. Suppose that the discrete topology τ on C(Y, Z) is F-splitting and Z is
not T0 space. We shall construct a continuous map F : F× Y → Z such that
F̂ is not continuous, which will be a contradiction.

There exist two distinct elements z1, z2 of Z such that either z1, z2 ∈ V or
z1, z2 6∈ V for every open subset V of Z. Let i be an element of F such that
Ui 6= {i}. We consider the map F : F × Y → Z such that F (i, y) = z1 for
every y ∈ Y , and F (j, y) = z2 for every j ∈ F \ {i} and y ∈ Y . Let V be an
open subset of Z. Then, either F−1(V ) = F×Y or F−1(V ) = ∅, which means
that F is continuous.

By the definition of F̂ : F → Cτ (Y,Z) we have F̂ (i)(Y ) = {z1}, and
F̂ (j)(Y ) = {z2} for every j ∈ F \ {i}. Let j ∈ Ui \ {i}. Then F̂ (j) 6∈ {F̂ (i)},
that is, F̂ (Ui) 6⊆ {F̂ (i)}, which means that F̂ is not continuous. �

Theorem 2.3. Let Z be a T1 space. Then, the discrete topology, and hence,
every topology on C(Y,Z) is F-splitting.

Proof. Let τ be the discrete topology on C(Y, Z) and F : F × Y → Z a
continuous map. We prove that the map F̂ : F→ Cτ (Y,Z) is continuous.

Let i ∈ F and F̂ (i) = f . Then f ∈ {f} ∈ τ . It is suffices to prove
that F̂ (Ui) ⊆ {f}, that is, F̂ (j) = f for every j ∈ Ui. Let j ∈ Ui and y

be an arbitrary point of Y . We need to prove that F̂ (j)(y) = f(y). Let U
be an arbitrary open neighborhood of f(y) = F̂ (i)(y) = F (i, y) in Z. Since
the map F is continuous there exists an open neighborhood Vy of y in Y

such that F (Ui × Vy) ⊆ U . Therefore, F (j, y) = F̂ (j)(y) ∈ U , which means
that f(y) ∈ ClZ({F̂ (j)(y)}). Since Z is a T1 space, f(y) = F̂ (j)(y). Hence,
F̂ (j) = f . Thus, the map F̂ : F → Cτ (Y, Z) is continuous and therefore the
topology τ on C(Y,Z) is F-splitting. �

Theorem 2.4. The pointwise topology τp, the compact-open topology τc, and
the Isbell topology τis on C(Y,Z) are F-splitting and F-jointly continuous.

Proof. First, we prove that τp is F-jointly continuous. Let G : F → Cτp(Y, Z)
be a continuous map. We need to prove that the map G̃ : F × Y → Z is
continuous.

Let (i, y) ∈ F × Y and U be an arbitrary open neighborhood of G̃(i, y) =
G(i)(y) in Z. Then G(i) ∈ ({y}, U). Since G is continuous, G(Ui) ⊆ ({y}, U).
Also, since the map G(j), j ∈ Ui, is continuous and G(j)(y) ∈ U there exists
an open neighborhood V jy of y in Y such that G(j)(V jy ) ⊆ U . Let Vy = ∩{V jy :
j ∈ Ui}. Then, G̃(Ui × Vy) ⊆ U . Thus, the map G̃ is continuous and the
therefore the topology τp is F-jointly continuous.

Since τp ⊆ τc and τp ⊆ τis (see [10]) the topologies τc and τis are also
F-jointly continuous.

Finally, since the topologies τp, τc and τis are splitting, they are also F-
splitting. �
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Theorem 2.5. The topology τQ(U) on the set C(Y,Z) generated by a quasi-
uniformity U on the space Z is F-splitting and F-jointly continuous.

Proof. Let U be a quasi-uniformity on the space Z. Since τQ(U) is jointly
continuous (see [11]), this topology is also F-jointly continuous.

We prove that τQ(U) is F-splitting. Let F : F × Y → Z be a continuous
map. We need to prove that F̂ : F → CτQ(U)(Y,Z) is continuous. Let i ∈ F
and F̂ (i) = fi. The set (Y, U)[fi] = {h ∈ C(Y, Z) : (fi, h) ∈ (Y,U)}, where U
is an element of U , is an open neighborhood of fi in CτQ(U)(Y, Z). We prove
that F̂ (Ui) ⊆ (Y, U)[fi]. Let j ∈ Ui. It is suffices to prove that F̂ (j) = fj ∈
(Y, U)[fi], that is fj ∈ (Y, U)[fi] or (fi(y), fj(y)) ∈ U for every y ∈ Y . Let
y ∈ Y and U [fi(y)] = {z ∈ Z : (fi(y), z) ∈ U}. Since F is continuous there
exists an open neighborhood Vy of y in Y such that F (Ui × Vy) ⊆ U [fi(y)].
So, for the element (j, y) of Ui × Vy we have F (j, y) = fj(y) ∈ U [fi(y)] or
(fi(y), fj(y)) ∈ U . Thus, the map F̂ is continuous and therefore the topology
τQ(U) is F-splitting. �

Definition 2.6. For every space X with a topology t we define an (n + 1)-
tuple relation denoted by Rt in X as follows: an (n + 1)-tuple (x0, x1, ..., xn)
of elements of X belongs to Rt if for every i, j ∈ F, xi ∈ ClX({xj}) provided
that i ∈ ClF({j}).

We observe that if t1, t2 are two topologies on a set X such that t1 ⊆ t2,
then Rt2 ⊆ Rt1 .

Definition 2.7. On the set C(Y, Z) we define an (n+1)-tuple relation denoted
by R as follows: an (n+ 1)-tuple (f0, f1, ..., fn) of elements of C(Y,Z) belongs
to R if (f0(y), f1(y), ..., fn(y)) ∈ RtZ for every y ∈ Y .

Below we give necessary and sufficient conditions for an arbitrary topology
τ on C(Y, Z) to be F-splitting or F-jointly continuous.

Theorem 2.8. A topology τ on C(Y, Z) is F-splitting if and only if R ⊆ Rτ .

Proof. Let τ be an F-splitting topology on C(Y, Z). Suppose that (f0, f1, ..., fn) ∈
R. We need to prove that (f0, f1, ..., fn) ∈ Rτ .

Let F : F×Y → Z be a map for which F (i, y) = fi(y), for every i ∈ F and
y ∈ Y . This map is continuous. Indeed, let U be an open neighborhood of
fi(y) in Z. Since fi is continuous, the set f−1

i (U) is open neighborhood of y in
Y . Therefore it is sufficient to prove that:

F (Ui × f−1
i (U)) ⊆ U.

Let (j, y′) ∈ Ui × f−1
i (U). By the definition of F , F (j, y′) = fj(y′). Since

j ∈ Ui we have i ∈ ClF({j}). Also, by the definition of the (n + 1)-tuple
relation R we have fi(y′) ∈ ClZ(fj(y′)). Since fi(y′) ∈ U we have fj(y′) ∈ U .
Thus, F (Ui × f−1

i (U)) ⊆ U , that is F is continuous.
Furthermore, since τ is F-splitting, the map F̂ : F→ Cτ (Y, Z) is continuous.
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Now, we prove that (f0, f1, ..., fn) ∈ Rτ . Let i, j ∈ F such that i ∈ ClF({j}).
We need to prove that fi ∈ ClCτ (Y,Z)({fj}). Let W be an open neighborhood
of fi in Cτ (Y, Z). Then, F̂−1(W ) is an open neighborhood of i in F and
therefore j ∈ F̂−1(W ). This means that F̂ (j) = fj ∈ W and therefore fi ∈
ClCτ (Y,Z)({fj}). Hence, (f0, f1, ..., fn) ∈ Rτ .

Conversely, let τ be a topology on C(Y, Z) such that the condition
(f0, f1, .., fn) ∈ R implies (f0, f1, ..., fn) ∈ Rτ . We prove that τ is F-splitting.

Let F : F×Y → Z be a continuous map. Consider the map F̂ : F→ Cτ (Y, Z)
and let F̂ (i) = fi, i ∈ F. First, we prove that (f0, f1, ..., fn) ∈ R. Indeed, let
y ∈ Y . Consider the (n+ 1)-tuple (f0(y), f1(y), ..., fn(y)) and suppose that i ∈
ClF({j}). Let U be an open neighborhood of fi(y) in Z. Since F (i, y) = fi(y)
and F is continuous, the set F−1(U) is an open neighborhood of (i, y) in F×Y .
Therefore there exist open sets V and W of F and Y , respectively, such that
(i, y) ∈ V ×W ⊆ F−1(U). This means that j ∈ V and F (j, y) = fj(y) ∈ U
and therefore fi(y) ∈ ClZ(fj(y)), that is (f0(y), f1(y), ..., fn(y)) ∈ RtZ . Hence
(f0, f1, ..., fn) ∈ R. By the assumption, (f0, f1, ..., fn) ∈ Rτ .

Now, we prove that F̂ is continuous. Let F̂ (i) = fi and H be an open
neighborhood of fi in Cτ (Y,Z). It suffices to prove that

F̂ (Ui) ⊆ H.

Let j ∈ Ui. Then i ∈ ClF({j}). Since (f0, f1, ..., fn) ∈ R we have (f0(y), f1(y)
, ..., fn(y)) ∈ RtZ for every y ∈ Y . Therefore fi(y) ∈ ClZ({fj(y)}) for every
y ∈ Y , that is fi ∈ ClCτ (Y,Z)({fj}) which means that F̂ (j) = fj ∈ H.

Hence the map F̂ is continuous and the topology τ is F-splitting. �

The next corollary follows by the fact that for F=S (respectively, for F=D)
then the 2-tuple relations R and Rτ on C(Y, Z) coincide with the relations ≤
and ≤

τ

(respectively, with the relations ∼ and ∼τ ).

Corollary 2.9. The following (see [7]) are true:
(1) A topology τ on C(Y,Z) is S-splitting if and only if the condition f ≤ g

implies f ≤
τ

g.
(2) A topology τ on C(Y,Z) is D-splitting if and only if the condition f ∼ g

implies f ∼τ g.

Theorem 2.10. A topology τ on C(Y,Z) is F-jointly continuous if and only
if Rτ ⊆ R.

Proof. Let τ be an F-jointly continuous topology on C(Y,Z). Suppose that
(f0, f1, ..., fn) ∈ Rτ . We need to prove that (f0, f1, ..., fn) ∈ R.

Let G : F→ Cτ (Y, Z) be a map for which G(i) = fi for every i ∈ F. We prove
that G is continuous. Let H be an open subset of Cτ (Y, Z) such that fi ∈ H.
It is suffices to prove that G(Ui) ⊆ H. Let j ∈ Ui. Since, i ∈ ClF({j}). and
(f0, f1, ..., fn) ∈ Rτ we have fi ∈ ClCτ (Y,Z)({fj}). Therefore G(j) = fj ∈ H,
that is the map G is continuous.
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Moreover, since τ is F-jointly continuous, the map G̃ : F×Y → Z is also
continuous.

Now, we prove that (f0, f1, .., fn) ∈ R. Let y ∈ Y . Consider the (n+1)-tuple
(f0(y), f1(y), ..., fn(y)) and let i ∈ ClF({j}). It is suffices to prove prove that
fi(y) ∈ ClZ({fj(y)}). Let U be an open neighborhood of fi(y) in Z. Since
G̃(i, y) = fi(y) we have G̃−1(U) is an open subset of F×Y containing the point
(i, y). There exist an open neighborhood V of i in F and an open neighborhood
W of y in Y such that V ×W ⊆ G̃−1(U). Since i ∈ ClF({j}) we have that
j ∈ V and therefore (j, y) ∈ G̃−1(U), which means that G̃(j, y) = fj(y) ∈ U .
Thus, fi(y) ∈ ClZ({fj(y)}). Hence, (f0, f1, ..., fn) ∈ R.

Conversely, let τ be a topology on C(Y, Z) such that the condition
(f0, f1, ..., fn) ∈ Rτ implies (f0, f1, ..., fn) ∈ R. We prove that τ is F-jointly
continuous.

Let G : F→ Cτ (Y, Z) be a continuous map such that G(i) = fi for every i ∈
F. Then the (n+1)-tuple (f0, f1, ..., fn) belongs to Rτ . Indeed, let i ∈ ClF({j})
and H be an open neighborhood of fi in Cτ (Y, Z). Since G is continuous, the
set G−1(H) is an open subset of F containing the point i. Hence, j ∈ G−1(H)
and, therefore, G(j) = fj ∈ H, which means that fi ∈ ClCτ (Y,Z)({fj}). Thus,
(f0, f1, ..., fn) ∈ Rτ .

Now, we consider the map G̃ : F×Y → Z and prove that this map is
continuous. Let (i, y) ∈ F×Y . Suppose that U is an open subset of Z such that
G̃(i, y) = G(i)(y) = fi(y) ∈ U . Since the map fi is continuous and fi(y) ∈ U ,
there exists an open neighborhood W of y in Y such that fi(W ) ⊆ U . To prove
that G̃ is continuous it is suffices to prove that

G̃(Ui ×W ) ⊆ U.

Indeed, let (j, y′) ∈ Ui ×W . Then j ∈ Ui, that is i ∈ ClF({j}). By the
above fi ∈ ClCτ (Y,Z)({fj}). Since (f0, f1, ..., fn) ∈ Rτ , by assumption we have
(f0, f1, ..., fn) ∈ R. Thus fi(y) ∈ ClZ({fj(y)}) for every y ∈ Y and therefore
fi(y′) ∈ ClZ({fj(y′)}). Hence G̃(j, y′) = G(j)(y′) = fj(y′) ∈ U .

Thus, G̃ is continuous and therefore τ is an F-jointly continuous topology.
�

Corollary 2.11. The following (see [7]) are true:
(1) A topology τ on C(Y, Z) is S-jointly continuous if and only if the con-

dition g ≤
τ

f implies g ≤ f .
(2) A topology τ on C(Y, Z) is D-jointly continuous if and only if the con-

dition f ∼τ g implies f ∼ g.

Remark 2.12. The first five Theorems of this paper can be obtained by the
last two Theorems provided that:

(1) For the trivial topology, and hence, for every topology τ on the set
C(Y, Z) we have Rτ ⊆ R if and only if the topology of Z is trivial.

(2) If for the discrete topology, and hence, for every topology τ on C(Y, Z)
we have R ⊆ Rτ , then Z is T0 space.
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(3) Let Z be a T1 space. Then, for the discrete topology, and hence, for
every topology τ on C(Y,Z) we have R ⊆ Rτ .

(4) For the pointwise topology, for the compact open topology, and for the
Isbell topology τ on C(Y, Z) we have Rτ = R.

(5) For the topology τQ(U) on the set C(Y, Z) which generated by a quasi-
uniformity U we have R = RτQ(U) .

The above statements can be easily proved.
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