On pseudo-k-spaces

ANNAMARIA MIRANDA

ABSTRACT. In this note a new class of topological spaces generalizing k-spaces, the pseudo-k-spaces, is introduced and investigated. Particular attention is given to the study of products of such spaces, in analogy to what is already known about k-spaces and quasi-k-spaces.

2000 AMS Classification: 54D50, 54D99, 54B10, 54B15

Keywords: Quotient map, product space, locally compact space, (locally) pseudocompact space, pseudo-k-space.

1. Introduction

The first example of two k-spaces whose cartesian product is not a k-space was given by Dowker (see [2]). So a natural question is when a k-space satisfies that its product with every k-space is also a k-space. In 1948 J.H.C. Whitehead proved that if X is a locally compact Hausdorff space then the cartesian product $i_X \times g$, where i_X stands for the identity map on X, is a quotient map for every quotient map g. Using this result D.E. Cohen proved that if X is locally compact Hausdorff then $X \times Y$ is a k-space for every k-space Y (see Theorem 3.2 in [1]). Later the question was solved by Michael who showed that a k-space has this property iff it is a locally compact space (see [5]).

A similar question, related to quasi-k-spaces, was answered by Sanchis (see [8]). Quasi-k-spaces were investigated by Nagata (see [7]) who showed that “a space X is a quasi-k-space (resp. a k-space) if and only if X is a quotient space of a regular (resp. paracompact) M-space (see [6]).

The study of quasi-k-spaces suggests to define a larger class of spaces simply replacing countable compactness with pseudocompactness in the definition.

This note begins with the study of general properties about pseudo-k-spaces which leads on results about products of pseudo-k-spaces, in analogy with those known about k-spaces and more generally about quasi-k-spaces.

For terminology and notations not explicitly given we refer to [3].
We consider pseudocompact spaces which are not necessarily Tychonoff. Recall that

Definition 2.1. A topological space X is called pseudocompact if every continuous real-valued function defined on X is bounded.

Definition 2.2. A topological space X is called locally compact (resp. locally countably compact) if each point of X has a compact (resp. countably compact) neighborhood.

In analogy with the definitions of locally compact (resp. locally countably compact) space we have the following

Definition 2.3. A topological space X is called locally pseudocompact if each point of X has a pseudocompact neighborhood.

Clearly a locally compact space is locally pseudocompact and we have

Proposition 2.4. The cartesian product of a locally pseudocompact space X and a locally compact space Y is locally pseudocompact.

Proof. It suffices to observe that Corollary 3.10.27 in [3] holds even if the pseudocompact factor is not necessarily Tychonoff. \square

Proposition 2.5. If all spaces X_s are pseudocompact then the sum $\bigoplus_{s \in S} X_s$, where $X_s \neq \emptyset$ for $s \in S$, is locally pseudocompact.

Now we are going to define a new class of spaces which is larger than the class of k-spaces.

Definition 2.6. A topological space X is called a pseudo-k-space if X is a Hausdorff space and X is the image of a locally pseudocompact Hausdorff space under a quotient mapping.

In other words, pseudo-k-spaces are Hausdorff spaces that can be represented as quotient spaces of locally pseudocompact Hausdorff spaces. Clearly every locally pseudocompact Hausdorff space is a pseudo-k-space.

We can compare this kind of spaces with the one of quasi-k-spaces. To this aim recall that

Definition 2.7. A Hausdorff space X is a quasi-k-space if, and only if, a subset $A \subseteq X$ is closed in X whenever the intersection of A with any countably compact subset Z of X is closed in Z.

Condition (2) in Theorem 2.11 yields

Proposition 2.8. Every quasi-

quasi-

k-space is a pseudo-

k-space.

The following example will show that the class of quasi-

k-spaces is strictly contained in the class of pseudo-

k-spaces.

Definition 2.9. A Hausdorff space \(X \) is called \(H \)-closed if \(X \) is a closed sub-

space of every Hausdorff space in which it is contained.

For a Hausdorff space \(X \), this definition is equivalent to say that every open cover \(\{U_s\}_{s \in S} \) of \(X \) contains a finite subfamily \(\{U_{s_1}, U_{s_2}, \ldots, U_{s_k}\} \) such that \(\overline{U_{s_1}} \cup \overline{U_{s_2}} \cup \ldots \cup \overline{U_{s_k}} = X \).

Example 2.10. A \(H \)-closed space which is not a quasi-

k-space.

Let \(S \) be the family of all free ultrafilters on \(\mathbb{N} \), let \(k\mathbb{N} = \mathbb{N} \cup S \) be the Katětov extension of \(\mathbb{N} \). We have that

1. \(k\mathbb{N} \) is a \(H \)-closed space;
2. \(k\mathbb{N} \) is not a quasi-

k-space.

It is enough to show that all countably compact subsets of \(k\mathbb{N} \) have finite cardinality. Let \(Y \subset X = k\mathbb{N} \) be countably compact. \(S \) is closed and discrete in \(X \) so \(Y \cap S \) is closed and discrete in \(Y \), therefore \(Y \cap S = \{p_1, \ldots, p_n\} \).

Hence \(Y = S \cup \{p_1, \ldots, p_n\} \), where \(S \subset \mathbb{N} \).

Assume that \(S \) is infinite. Since \(p_1, \ldots, p_n \) are distinct ultrafilters, there exists \(S_1 \subset S \) such that \(|S_1| = \omega \), \(S_1 \subset p_1 \) and \(S_1 \notin p_i \) for every \(i \neq 1 \). In fact let \(H_i \in p_1 \) such that \(H_i \notin p_i \) for every \(i \neq 1 \), then \(S_1 = \bigcap_{i=1}^{n} H_i \in p_1 \) and \(S_1 \notin p_i \) for every \(i \neq 1 \), otherwise \(S_1 \subset p_i \) and \(S_1 \subset H_i \) implies \(H_i \in p_i \). Moreover \(S_1 \) is infinite. Indeed, if \(p \) is an ultrafilter, \(A = \{x_1, \ldots, x_n\} \) and \(A \in p \), then \(\{x_i\} \notin p \) implies that \(\mathbb{N}\setminus \{x_i\} \in p \) for every \(i \), so \(\bigcap_{i=1}^{n} \mathbb{N}\setminus \{x_i\} = \mathbb{N}\setminus A \in p \), a contradiction.

Now, let \(G \subset S_1 \) such that \(|G| = \omega \) and \(|S_1\setminus G| = \omega \). Then \(G \in p_1 \) or \(\mathbb{N}\setminus G \in p_1 \). Since \(S_1 \subset p_1 \) it follows that \(G \in p_1 \) or \(S_1\setminus G \in p_1 \). Let us suppose that \(S_1\setminus G \in p_1 \). Then \(G \notin p_1 \). Therefore \(G \notin p_i \) for every \(i \).

Since \(G \notin p_i \) \(\forall i \in \{1, \ldots, n\} \), it follows that for every \(i \) there exists \(A_i \subset p_i \) such that \(G \cap A_i = \emptyset \), so \(V_i = A_i \cup \{p_i\} \) is an open neighborhood of \(p_i \) such that \(V_i \cap G = \emptyset \), therefore \(p_i \notin \overline{G} \) for every \(i \), hence \(G \) is closed in \(Y \) and, since \(G \subset \mathbb{N} \), \(G \) is also discrete. So \(G \) is an infinite closed discrete subspace of the countably compact space \(Y \), a contradiction. Hence \(S \) is finite.

In conclusion, since any \(H \)-closed space is a pseudocompact space, \(k\mathbb{N} \) is a pseudo-

k-space which is not a quasi-

k-space.

Now we give two useful characterizations of pseudo-

k-spaces.
Theorem 2.11. Let X be a Hausdorff space. The following conditions are equivalent:

1. X is a pseudo-k-space.
2. For each $A \subset X$, the set A is closed provided that the intersection of A with any pseudocompact subspace Z of X is closed in Z.
3. X is a quotient space of a topological sum of pseudocompact spaces.

Proof. (1)\Rightarrow(2) Let X be a pseudo-k-space and let $f : Y \to X$ be a quotient mapping of a locally pseudocompact Hausdorff space Y onto X. Suppose that the intersection of a set A with any pseudocompact subspace P of X is closed in P. Take a point $y \in f^{-1}(A)$ and a neighborhood $U \subset Y$ of the point y such that U is pseudocompact. Since the space $f(U)$ is pseudocompact (see Theorem 3.10.24 [3] which holds even if the range space Y is not Tychonoff), the set $A \cap f(U)$ is closed in $f(U)$.

Now, if $y \notin f^{-1}(A)$ then $f(y) \notin A \cap f(U)$ so there exists an open set T in X containing $f(y)$ such that $T \cap (A \cap f(U)) = \emptyset$. It follows that $f^{-1}(T) \cap f^{-1}(A) \cap U = \emptyset$ where the set $f^{-1}(T) \cap U$ represents a neighborhood of y disjoint from $f^{-1}(A)$. This is a contradiction. Then $y \in f^{-1}(A)$.

(2)\Rightarrow(3) Now consider a Hausdorff space X and denote by $P(X)$ the family of non-empty pseudocompact subspaces of X. Let $\hat{X} = \bigoplus_{P \in P(X)} P$, where i_P is the embedding of the subspace P in the space X, is continuous (see Proposition 2.1.11 [3]). Suppose now that A is closed in \hat{X}, this means $A \cap P$ closed in P, for every pseudocompact subset P of X. Then, by (2), A is closed in X. It follows that f is a quotient map.

(3)\Rightarrow(1) If X is a quotient space of a topological sum of pseudocompact spaces then X is a pseudo-k-space, by Proposition 2.5. □

Corollary 2.12. A Hausdorff space X is a pseudo-k-space if, and only if, a subset $A \subset X$ is open in X whenever the intersection of A with any pseudocompact subset P of X is open in P.

Regarding the continuity of a mapping whose domain is a pseudo-k-space we have the following

Theorem 2.13. A mapping f of a pseudo-k-space X to a topological space Y is continuous if and only if for every pseudocompact subspace $P \subset X$ the restriction $f|_P : P \to Y$ is continuous.

From the definition of a pseudo-k-space we obtain

Theorem 2.14. If there exists a quotient mapping $f : X \to Y$ of a pseudo-k-space X onto a Hausdorff space Y, then Y is a pseudo-k-space.
Theorem 2.11 yields

Theorem 2.15. The sum $\oplus_{s \in S} X_s$ is a pseudo-k-space if and only if all spaces are pseudo-k-spaces.

3. On products of pseudo-k-spaces

The cartesian product of two pseudo-k-spaces need not be a pseudo-k-space. So, when a pseudo-k-space satisfies that its product with every pseudo-k-space is also a pseudo-k-space?

Proposition 2.4 states that the cartesian product of a locally compact space and a locally pseudocompact Hausdorff space is a locally pseudocompact space.

This result, together with Definition 2.6, yields

Theorem 3.1. *The cartesian product* $X \times Y$ *of a locally compact Hausdorff space* X *and a pseudo-k-space* Y *is a pseudo-k-space.*

Proof. Let $g : Z \rightarrow Y$ be a quotient mapping of a locally pseudocompact Hausdorff space Z onto a pseudo-k-space Y. The cartesian product $f : id_X \times g : X \times Z \rightarrow X \times Y$ is a quotient mapping, by virtue of the Whitehead Theorem (see Lemma 4 in [9], or Theorem 3.3.17 in [3]). Now, since, by Proposition 2.4, $X \times Z$ is a locally pseudocompact Hausdorff space, it follows that $X \times Y$ is a pseudo-k-space. □

The previous Theorem gives a sufficient condition to obtain that the cartesian product of two pseudo-k-spaces is a pseudo-k-space. This condition, for regular spaces, is also necessary, as we will see in Theorem 3.4.

Now, starting from a regular space X which is not locally compact, we define, following a construction introduced by Michael in [5], a normal pseudo-k-space $Y(X)$ such that the product $X \times Y(X)$ is not a pseudo-k-space. This enable us not only to give examples of two pseudo-k-spaces whose product is not a pseudo-k-space, but also to show Theorem 3.4.

Suppose that X is a regular space which is not locally compact at some $x_0 \in X$. Let $\{U_\alpha\}_{\alpha \in A}$ be a local base of non-compact closed sets at x_0. For every $\alpha \in A$ let $\lambda(\alpha)$ be a limit ordinal and $\{F_{\lambda}\}_{\lambda < \lambda(\alpha)}$ be a well-ordered family of non-empty closed subsets of U_α whose intersection is empty.

Each $\lambda(\alpha) + 1$, equipped with the order topology, is a compact Hausdorff space. Therefore $\lambda(\alpha) + 1$ is a normal pseudo-k-space.

Then, by Theorem 2.15 jointly with Theorem 2.27 in [3], the topological sum $\Lambda = \oplus \{\lambda(\alpha) + 1 : \alpha \in A\}$ is a normal pseudo-k-space.

Now, let us denote by $Y(X)$ the quotient space obtained by identifying all the final points $\lambda(\alpha) \in \lambda(\alpha) + 1$ to a single points y_0.\[\]
We have the following

Theorem 3.2. The space \(Y(X) \) is a normal pseudo-k-space. Moreover, if \(P \) is a pseudocompact subset of \(Y(X) \), then \(|\{\alpha \in A : P \cap \lambda(\alpha) \neq \emptyset\}| < \omega\).

Proof. Let us denote by \(g : \Lambda \rightarrow Y(X) \) the canonical projection defining \(Y(X) \). It is easy to verify that \(g \) is a closed mapping. So, since the normality preserves under closed mappings, it follows that \(Y(X) \) is normal. Moreover, since \(g \) is a continuous surjective closed map, then \(g \) is a quotient mapping. Then, by Theorem 2.14, the space \(Y(X) \) is a pseudo-k-space.

Now, suppose that there exists \(B \subset A, |B| \geq \omega \), such that a pseudocompact subset \(P \) of \(Y(X) \) meets each element of the family \(\{\lambda(\alpha) : \alpha \in B\} \). Observe that for every \(\alpha \in A \), since \(\lambda(\alpha) \) is open in \(Y(X) \), the set \(\lambda(\alpha) \cap P \) is open in \(P \). Then the set \(\{\lambda(\alpha) \cap P : \alpha \in B\} \) is a locally finite family of non-empty open subsets of \(P \). Since \(P \) is a Tychonoff space, this is equivalent to say that \(P \) is not pseudocompact (see Theorem 3.10.22 in [3]), a contradiction. \(\square \)

Theorem 3.3. Let \(X \) be a regular space which is not locally compact at a point \(x_0 \). The cartesian product \(X \times Y(X) \) is not a pseudo-k-space.

Proof. Let \(X \) be a regular space which is not locally compact at a point \(x_0 \). Let us show that the cartesian product \(X \times Y(X) \) is not a pseudo-k-space. It suffices to find a subset \(H \) of \(X \times Y(X) \), which is not closed even if the intersection of \(H \) with any pseudocompact subspace \(P \) of the space \(X \times Y(X) \) is closed in \(P \).

Recall that, in the definition of \(Y(X) \), the set \(A \) denotes an index set and to each \(\alpha \in A \) is associated a limit ordinal \(\lambda(\alpha) \) such that \(\bigcap_{\lambda < \lambda(\alpha)} F_\lambda \) is empty.

Now fix \(\alpha \in A \) and \(\lambda \in \lambda(\alpha) + 1 \) and define \(E_\lambda = \bigcap_{\mu < \lambda} F_\mu \). Then \(E_\lambda = \emptyset \).

Moreover the set \(S_\alpha = \bigcup \{E_\lambda \times \{\lambda\} : \lambda \in \lambda(\alpha) + 1\} \) is closed in \(X \times (\lambda(\alpha) + 1) \), which implies that it is closed in \(X \times \Lambda \).

Denote by \(g \) the canonical projection \(g : \Lambda \rightarrow Y(X) \) and by \(h \) the function \(id_X \times g \), and define the set \(H = \bigcup_{\alpha \in A} h(S_\alpha) \subset X \times Y(X) \).

We shall show that \(H \) is the set we are searching for.

First let us prove that the intersection of \(H \) with any pseudocompact subset \(P \) of \(X \times Y(X) \) is closed in \(P \). The projection \(p_\mu(P) \) is a pseudocompact subset in \(Y(X) \) so, by virtue of Theorem 3.2, we have

\[|\{\alpha \in A : p_\mu(P) \cap \lambda(\alpha) \neq \emptyset\}| < \omega \]

Then \(P \) meets finitely many \(X \times g(\lambda(\alpha) + 1) = X \times (\lambda(\alpha) \cup \{y_0\}) \supset h(S_\alpha) \).

Now, since \(h(S_\alpha) \) is closed in \(X \times Y(X) \) for each \(\alpha \in A \), it follows that the set \(H \cap P = \bigcup_{\alpha \in A} (h(S_\alpha) \cap P) \) is closed in \(P \).
Now let us show that \(H \) is not closed in \(X \times Y(X) \). The point \((x_0, y_0) \in X \times Y(X)\) belongs to \(\overline{H} \) but does not belong to \(H \). Take a neighborhood \(U \times V \) of \((x_0, y_0)\), \(U\) open in \(X \), \(V\) open in \(Y(X) \), and let \(U_\beta \) a closed non-compact neighborhood \(U_\beta \subset U \), for some \(\beta \in A \). Now, consider the canonical projection \(g : \Lambda \to Y(X) \), and fix \(\lambda \in g^{-1}(V) \cap \lambda(\beta) \). The set \(h(E_\lambda \times \{\lambda\}) \neq \emptyset \) is contained in \((U \times V) \cap H \). Therefore \((x_0, y_0) \in \overline{H} \).

Suppose that \((x_0, y_0) \in H\), then \((x_0, y_0) \in h(S_\alpha)\) for some \(\alpha \in A \). This is a contradiction. \(\square \)

Theorems 3.1 and 3.3 provide the following characterization for locally compact spaces.

Theorem 3.4. Let \(X \) be a regular space. The following conditions are equivalent:

1. \(X \) is locally compact.
2. \(X \times Y \) is a pseudo-k-space, for each pseudo-k-space \(Y \).

Proof. (1) \(\Rightarrow \) (2) It follows from Theorem 3.1.

(2) \(\Rightarrow \) (1) Let \(X \) be a regular space which is not locally compact at a point \(x_0 \). Then, by virtue of Theorems 3.2 and 3.3, the space \(Y(X) \) is a pseudo-k-space such that \(X \times Y(X) \) is not a pseudo-k-space. \(\square \)

In terms of products of mappings we have

Theorem 3.5. Let \(X \) be a regular space. The following conditions are equivalent:

1. \(X \) is locally compact.
2. \(\text{id}_X \times g \) is a quotient map with domain a locally pseudocompact Hausdorff space, for every quotient map \(g \) with domain a locally pseudocompact Hausdorff space \(Y \).

Proof. (1) \(\Rightarrow \) (2) It comes directly from Whitehead Theorem (see Theorem 3.3.17 in [3]) and Proposition 2.4.

(2) \(\Rightarrow \) (1) If \(X \) is not locally compact then we can consider \(Y(X) \), defined as before, and the projection map \(g : \Lambda \to Y(X) \), which is a quotient map with domain the locally pseudocompact Hausdorff space \(\Lambda \). It is easy to show that \(h = \text{id}_X \times g \) is not a quotient map with domain a locally pseudocompact Hausdorff space. Indeed if \(h \) was a quotient map with domain a locally pseudocompact Hausdorff space then \(X \times Y(X) \) should be a pseudo-k-space, but \(X \times Y(X) \) is not a pseudo-k-space by virtue of Theorem 3.3. \(\square \)
REFERENCES

RECEIVED FEBRUARY 2007
ACCEPTED OCTOBER 2007

A. Miranda (amiranda@unisa.it)
Dip. di Matematica e Informatica, Università di Salerno, Via Ponte Don Melillo, 84084 Fisciano (Salerno), Italy