Topologies on function spaces and hyperspaces

D. N. GEORGIU *

Abstract. Let Y and Z be two fixed topological spaces, $O(Z)$ the family of all open subsets of Z, $C(Y, Z)$ the set of all continuous maps from Y to Z, and $O_Z(Y)$ the set $\{ f^{-1}(U) : f \in C(Y, Z) \text{ and } U \in O(Z) \}$. In this paper, we give and study new topologies on the sets $C(Y, Z)$ and $O_Z(Y)$ calling (A, A_0)-splitting and (A, A_0)-admissible, where A and A_0 families of spaces.

2000 AMS Classification: 54C35
Keywords: function space, hyperspace, splitting topology, admissible topology.

1. Preliminaries

Let Y and Z be two fixed topological spaces. By $C(Y, Z)$ we denote the set of all continuous maps from Y to Z. If t is a topology on the set $C(Y, Z)$, then the corresponding topological space is denoted by $C_t(Y, Z)$.

Let X be a space. To each map $g : X \times Y \to Z$ which is continuous in $y \in Y$ for each fixed $x \in X$, we associate the map $g^* : X \to C(Y, Z)$ defined as follows: for every $x \in X$, $g^*(x)$ is the map from Y to Z such that $g^*(x)(y) = g(x, y)$, $y \in Y$. Obviously, for a given map $h : X \to C(Y, Z)$, the map $h^o : X \times Y \to Z$ defined by $h^o(x, y) = h(x)(y)$, $(x, y) \in X \times Y$, satisfies $(h^o)^* = h$ and is continuous in y for each fixed $x \in X$. Thus, the above association (defined in [7]) between the mappings from $X \times Y$ to Z that are continuous in y for each fixed $x \in X$, and the mappings from X to $C(Y, Z)$ is one-to-one.

In 1946 R. Arens [1] introduced the notion of an admissible topology: a topology t on $C(Y, Z)$ is called admissible if the map $e : C_t(Y, Z) \times Y \to Z$, called evaluation map, defined by $e(f, y) = f(y)$, is continuous.

In 1951 R. Arens and J. Dugundji [2] introduced the notion of a splitting topology: a topology t on $C(Y, Z)$ is called splitting if for every space X, the continuity of a map $g : X \times Y \to Z$ implies the continuity of the map $g^* : X \to C(Y, Z)$.

∗Work Supported by the Caratheodory programme of the University of Patras.
\[g^* : X \to C_t(Y, Z). \] On the set \(C(Y, Z) \) there exists the greatest splitting topology, denoted here by \(t_{gs} \) (see [2]). They also proved that a topology \(t \) on \(C(Y, Z) \) is admissible if and only if for every space \(X \), the continuity of a map \(h : X \to C_t(Y, Z) \) implies that of the map \(h^* : X \times Y \to Z \).

If in the above definitions it is assumed that the space \(X \) belongs to a fixed class \(A \) of topological spaces, then the topology \(t \) is called \(A \)-splitting or \(A \)-admissible, respectively (see [8]). In the case where \(A = \{ X \} \) we write \(X \)-splitting (respectively, \(X \)-admissible) instead of \(\{ X \} \)-splitting (respectively, \(\{ X \} \)-admissible).

Let \(X \) be a space. In what follows by \(\mathcal{O}(X) \) we denote the family of all open subsets of \(X \). Also, for two fixed topological spaces \(Y \) and \(Z \) we denote by \(\mathcal{O}_Z(Y) \) the set \(\{ f^{-1}(U) : f \in C(Y, Z) \text{ and } U \in \mathcal{O}(Z) \} \).

The Scott topology \(\Omega(Y) \) on \(\mathcal{O}(Y) \) (see, for example, [11]) is defined as follows: a subset \(\mathcal{H} \) of \(\mathcal{O}(Y) \) belongs to \(\Omega(Y) \) if:

\begin{itemize}
 \item[(a)] the conditions \(U \in \mathcal{H}, V \in \mathcal{O}(Y), \text{ and } U \subseteq V \) imply \(V \in \mathcal{H} \), and
 \item[(b)] for every collection of open sets of \(Y \), whose union belongs to \(\mathcal{H} \), there are finitely many elements of this collection whose union also belongs to \(\mathcal{H} \).
\end{itemize}

The strong Scott topology \(\Omega^s(Y) \) on \(\mathcal{O}(Y) \) (see [12]) is defined as follows: a subset \(\mathcal{H} \) of \(\mathcal{O}(Y) \) belongs to \(\Omega^s(Y) \) if:

\begin{itemize}
 \item[(a)] the conditions \(U \in \mathcal{H}, V \in \mathcal{O}(Y), \text{ and } U \subseteq V \) imply \(V \in \mathcal{H} \), and
 \item[(b)] for every open cover of \(Y \) there are finitely many elements of this cover whose union also belongs to \(\mathcal{H} \).
\end{itemize}

The Isbell topology \(t_{Is} \) (respectively, strong Isbell topology \(t_{sIs} \)) on \(C(Y, Z) \) (see, for example, [13] and [12]) is the topology, which has as a subbasis the family of all sets of the form:

\[(\mathcal{H}, U) = \{ f \in C(Y, Z) : f^{-1}(U) \in \mathcal{H} \}, \]

where \(\mathcal{H} \in \Omega(Y) \) (respectively, \(\mathcal{H} \in \Omega^s(Y) \)) and \(U \in \mathcal{O}(Z) \).

The compact open topology (see [7]) on \(C(Y, Z) \), denoted here by \(t_{co} \), is the topology for which the family of all sets of the form

\[(K, U) = \{ f \in C(Y, Z) : f(K) \subseteq U \}, \]

where \(K \) is a compact subset of \(Y \) and \(U \) is an open subset of \(Z \), form a subbase. It is known that \(t_{co} \subseteq t_{Is} \) (see, for example, [13]).

A subset \(K \) of a space \(X \) is said to be bounded if every open cover of \(X \) has a finite subcover for \(K \) (see [12]).

A space \(X \) is called corecompact (see [11]) if for every \(x \in X \) and for every open neighborhood \(U \) of \(x \), there exists an open neighborhood \(V \) of \(x \) such that the subset \(V \) is bounded in the space \(U \) (see [11]).
Below, we give some well known results:

1. The Isbell topology and, hence, the compact open topology, and the point open topology (denoted here by t_{po}) on $C(Y, Z)$ are always splitting (see, for example, [2], [3], and [13]).

2. The compact open topology on $C(Y, Z)$ is admissible if Y is a regular locally compact space. In this case the compact open topology is also the greatest splitting topology (see [2]).

3. The Isbell topology on $C(Y, Z)$ is admissible if Y is a corecompact space. In this case the Isbell topology is also the greatest splitting topology (see, for example, [12] and [14]).

4. A topology larger than a admissible topology is also admissible (see [2]).

5. A topology smaller than a splitting topology is also splitting (see [2]).

6. The strong Isbell topology on $C(Y, Z)$ is admissible if Y is a locally bounded space (see [12]).

For a summary of all the above results and some open problems on function spaces see [10]. Also, [4] and [5] are other papers related to this area.

In what follows if $\varphi : X \to Y$ is a map and $X_0 \subseteq X$, then by $\varphi|_{X_0} : X_0 \to Y$ we denote the restriction of the map φ on the set X_0. Also, if $h : X \times Y \to Z$ is a map and $X_0 \subseteq X$, then by $h|_{X_0 \times Y}$ we denote the restriction of the map h on the set $X_0 \times Y$.

In Sections 2 and 3 we give and study new topologies on the sets $C(Y, Z)$ and $OZ(Y)$ calling $(\mathcal{A}, \mathcal{A}_0)$-splitting and $(\mathcal{A}, \mathcal{A}_0)$-admissible, where \mathcal{A} and \mathcal{A}_0 families of spaces.

2. $(\mathcal{A}, \mathcal{A}_0)$-splitting and $(\mathcal{A}, \mathcal{A}_0)$-admissible topologies on the set $C(Y, Z)$

Note 1. Let \mathcal{A} be a family of topological spaces. For every $X \in \mathcal{A}$ we denote by X_0 a subspace of X and by \mathcal{A}_0 the family of all such subspaces X_0. In all paper by $(\mathcal{A}, \mathcal{A}_0)$ we denote the family of all pairs (X, X_0) such that $X \in \mathcal{A}$, $X_0 \in \mathcal{A}_0$, and X_0 is a subspace of X.

Definition 2.1. A topology t on $C(Y, Z)$ is called $(\mathcal{A}, \mathcal{A}_0)$-splitting if for every pair $(X, X_0) \in (\mathcal{A}, \mathcal{A}_0)$, the continuity of a map $g : X \times Y \to Z$ implies the continuity of the map $g^*|_{X_0} : X_0 \to C_t(Y, Z)$, where $g^* : X \to C_t(Y, Z)$ the map which is defined in preliminaries.

A topology t on $C(Y, Z)$ is called $(\mathcal{A}, \mathcal{A}_0)$-admissible if for every pair $(X, X_0) \in (\mathcal{A}, \mathcal{A}_0)$, the continuity of a map $h : X \to C_t(Y, Z)$ implies that of the map $h^*|_{X_0 \times Y} : X_0 \times Y \to Z$, where $h^* : X \times Y \to Z$ the map which is defined in preliminaries.

In the case where $\mathcal{A} = \{X\}$ and $\mathcal{A}_0 = \{X_0\}$, where X_0 is a subspace of X, we write (X, X_0)-splitting (respectively, (X, X_0)-admissible) instead of $(\{X\}, \{X_0\})$-splitting (respectively, $(\{X\}, \{X_0\})$-admissible).
Clearly, the following theorem is true.

Theorem 2.2. The following statements are true:

1. Every splitting (respectively, admissible) topology on $C(Y, Z)$ is (A, A_0)-splitting (respectively, (A, A_0)-admissible), where A and A_0 are arbitrary families of spaces such that every element $X_0 \in A_0$ is a subspace of an element $X \in A$.

2. Every A-splitting (respectively, A-admissible) topology on $C(Y, Z)$ is (A, A_0)-splitting (respectively, (A, A_0)-admissible), where A and A_0 are arbitrary families of spaces such that every element $X_0 \in A_0$ is a subspace of an element $X \in A$.

Example 2.3.

1. The point-open, the compact open, and the Isbell topologies are (A, A_0)-splitting, where A and A_0 are arbitrary families of spaces such that every element $X_0 \in A_0$ is a subspace of an element $X \in A$.

2. If Y is a regular locally compact space, then the compact-open topology is (A, A_0)-admissible, where A and A_0 are arbitrary families of spaces such that every element $X_0 \in A_0$ is a subspace of an element $X \in A$.

3. If Y is a corecompact space, then the Isbell topology is (A, A_0)-admissible, where A and A_0 are arbitrary families of spaces such that every element $X_0 \in A_0$ is a subspace of an element $X \in A$.

4. If Y is a locally bounded space, then the strong Isbell topology is (A, A_0)-admissible, where A and A_0 are arbitrary families of spaces such that every element $X_0 \in A_0$ is a subspace of an element $X \in A$.

5. Let X be a space, $x_0 \in X$, X_0 the subspace $\{x_0\}$ of X, and t an arbitrary topology on $C(Y, Z)$ which it is not X-splitting. Then, the topology t is (X, X_0)-splitting. It is clear that this topology is not splitting.

6. Let X be a space, $x_0 \in X$, X_0 the subspace $\{x_0\}$ of X, and t an arbitrary topology on $C(Y, Z)$ which it is not X-admissible. Then, the topology t is (X, X_0)-admissible. It is clear that this topology is not admissible.

Theorem 2.4. The following statements are true:

1. A topology smaller than an (A, A_0)-splitting topology is also (A, A_0)-splitting.

2. A topology larger than an (A, A_0)-admissible topology is also (A, A_0)-admissible.

Proof. We prove only the statement (1). The proof of (2) is similar. Let t_1 be an (A, A_0)-splitting topology on $C(Y, Z)$ and t_2 a topology on $C(Y, Z)$ such that $t_2 \subseteq t_1$. We prove that the topology t_2 is a (A, A_0)-splitting topology. Indeed, let $(X, X_0) \in (A, A_0)$ and let $g : X \times Y \to Z$ be a continuous map. Since the topology t_1 is (A, A_0)-splitting, the map $g^*|_{X_0} : X_0 \to C_{t_1}(Y, Z)$ is continuous. Also, since $t_2 \subseteq t_1$, the identical map $id : C_{t_1}(Y, Z) \to C_{t_2}(Y, Z)$ is
continuous. So, the map $g^*|_{X_0} : X_0 \to C_t(Y, Z)$ is continuous as a composition of continuous maps. Thus, the topology t_2 is (A, A_0)-splitting. □

Definition 2.5. Let (A_1^1, A_1^0) and (A_2^1, A_2^0) two pairs of spaces, where A_1^1 (respectively, A_2^1) and A_0^1 (respectively, A_0^0) are arbitrary families of spaces such that every element $X_0 \in A_0^1$ (respectively, every element $X_0 \in A_0^0$) is a subspace of an element $X \in A_1^{1}$ (respectively, of an element $X \in A_2^{1}$). We say that the pairs (A_1^1, A_1^0) and (A_2^1, A_2^0) are equivalent if a topology t on $C(Y, Z)$ is (A_1^1, A_1^0)-splitting if and only if t is (A_2^1, A_2^0)-splitting, and t is (A_1^1, A_1^0)-admissible if and only if t is (A_2^1, A_2^0)-admissible. In this case we write $(A_1^1, A_1^0) \sim (A_2^1, A_2^0)$.

Theorem 2.6. For every pair (A, A_0), where A and A_0 are arbitrary families of spaces such that every element $X_0 \in A_0$ is a subspace of an element $X \in A$, there exists a pair $(X(A), X(A_0))$, where $X(A)$ is a space and $X(A_0)$ is a subspace of $X(A)$ such that

$$(A, A_0) \sim (X(A), X(A_0)).$$

Proof. Let T_{sp}^c be the set of all topologies on $C(Y, Z)$ which are not (A, A_0)-splitting and let T_{ad}^c be the set of all topologies on $C(Y, Z)$ which are not (A, A_0)-admissible. For each $t \in T_{sp}^c$ there exists in (A, A_0) a pair (X_t^{sp}, X_t^{ad}) such that t is not (X_t^{sp}, X_t^{ad})-splitting. Similarly, for each $t \in T_{ad}^c$ there exists in (A, A_0) a pair (X_t^{ad}, X_t^{ad}) such that t is not (X_t^{ad}, X_t^{ad})-admissible. Let

$$A' = \{X_t^{sp} : t \in T_{sp}^c\} \cup \{X_t^{ad} : t \in T_{ad}^c\}$$

and

$$A'_0 = \{X_t^{sp}_{1,0} : t \in T_{sp}^c\} \cup \{X_t^{ad}_{1,0} : t \in T_{ad}^c\}.$$

Of course, we can suppose that the spaces from A' and A'_0 are pair-wise disjoint. Let $X(A)$ and $X(A_0)$ be the free union of all the spaces from A' and A'_0, respectively. We prove that the pair $(X(A), X(A_0))$ is the required pair.

Let t be an (A, A_0)-splitting topology on $C(Y, Z)$. We prove that this topology is $(X(A), X(A_0))$-splitting. Indeed, let $g : X(A) \times X \to Z$ be a continuous map. It suffices to prove that the map $g^*|_{X(A)} : X(A) \to C_t(Y, Z)$ is continuous. Let $X \in A' \subseteq A$. Then, the restriction $g|_{X \times Y}$ of the map g on $X \times Y \subseteq X(A) \times Y$ is also a continuous map and, therefore, since the topology t is (A, A_0)-splitting we have that the map $(g|_{X \times Y})^*|_{X_0} : X_0 \to C_t(Y, Z)$ is continuous. Since $X(A_0)$ is the free union of all the spaces from A'_0 and $(g|_{X \times Y})^*|_{X_0} = (g^*|_{X(A_0)})|_{X_0}$, it follows that the map $g^*|_{X(A_0)} : X(A_0) \to C_t(Y, Z)$ is continuous. Thus, the topology t on $C(Y, Z)$ is $(X(A), X(A_0))$-splitting.

Now, let t be an $(X(A), X(A_0))$-splitting topology on $C(Y, Z)$. We prove that t is (A, A_0)-splitting. We suppose that t is not (A, A_0)-splitting. Then, $t \in T_{sp}^c$ and, therefore, t is not (X_t^{sp}, X_t^{sp})-splitting for some pair $(X_t^{sp}, X_t^{sp}) \in (A, A_0)$. Thus, there exists a continuous map $g : X_t^{sp} \times Y \to Z$ such that the
map \(g^*|_{A_0^p} : X_{i,0}^p \to C_t(Y, Z) \) is not continuous. Since the space \(X(A) \) is the free union of all the spaces from the family \(A' \), the map \(g \) can be extended to a continuous map \(g_1 : X(A) \times Y \to Z \). Since the map \(g^*|_{X_{i,0}^p} \) is not continuous, \(X_{i,0}^p \in A_0^p \), and the space \(X(A_0) \) is the free union of all spaces from \(A_0^p \) we have that the map

\[
g^*|_{X(A_0)} : X(A_0) \to C_t(Y, Z)
\]

is not continuous, which contradicts our assumption that \(t \) is a \((X(A), X(A_0))\)-splitting topology. Thus, a topology \(t \) on \(C(Y, Z) \) is \((A, A_0)\)-splitting if and only if it is \((X(A), X(A_0))\)-splitting.

Similarly, a topology \(t \) on \(C(Y, Z) \) is \((A, A_0)\)-admissible if and only if is \((X(A), X(A_0))\)-admissible. Hence,

\[(A, A_0) \sim (X(A), X(A_0)).\]

\(\square \)

Theorem 2.7. There exists the greatest \((A, A_0)\)-splitting topology, where \(A \) and \(A_0 \) are arbitrary families of spaces such that every element \(X_0 \in A_0 \) is a subspace of an element \(X \in A \).

Proof. Let \(\{t_i : i \in I\} \) be the family of all \((A, A_0)\)-splitting topologies on \(C(Y, Z) \). We consider the topology \(t = \bigvee\{t_i : i \in I\} \). Clearly, \(t \) is \((A, A_0)\)-splitting and \(t_i \subseteq t \), for every \(i \in I \). Thus, \(t \) is the greatest \((A, A_0)\)-splitting topology.

\(\square \)

Note 2. In what follows we denote by \(t(A, A_0) \) the greatest \((A, A_0)\)-splitting topology on \(C(Y, Z) \).

Theorem 2.8. The following statements are true:

1. If \((A, A_0) = \cup\{(A^i, A_0^i) : i \in I\}\), then

 \[t(A, A_0) = \cap\{t(A^i, A_0^i) : i \in I\}.\]

2. If \((A, A_0) = \cap\{t(X, X_0) : (X, X_0) \in (A, A_0)\}\).

3. If \((A, A_0) = \cap\{(A^i, A_0^i) : i \in I\}\), then

 \[\bigvee\{t(A^i, A_0^i) : i \in I\} \subseteq t(A, A_0).\]

Proof. (1) Since \((A, A_0) = \cup\{(A^i, A_0^i) : i \in I\}\) we have that every topology which is \((A, A_0)\)-splitting is also \((A^i, A_0^i)\)-splitting, for every \(i \in I \). Thus, the topology \(t(A, A_0) \) is \((A^i, A_0^i)\)-splitting and, therefore,

\[t(A, A_0) \subseteq t(A^i, A_0^i),\]

for every \(i \in I \). So, we have

\[t(A, A_0) \subseteq \cap\{t(A^i, A_0^i) : i \in I\}.\]

Now, we prove the converse relation, that is

\[\cap\{t(A^i, A_0^i) : i \in I\} \subseteq t(A, A_0).\]
For the above relation it suffices to prove that the topology \(\cap \{ t(A^i, \mathcal{A}^i_0) : i \in I \} \) is \((\mathcal{A}, \mathcal{A}_0)\)-splitting. Let \((X, X_0) \in (\mathcal{A}, \mathcal{A}_0)\) and let \(g : X \times Y \to Z \) be a continuous map. We prove that the map

\[
g^*|_{X_0} : X_0 \to C_{t(\cap \{ t(A^i, \mathcal{A}^i_0) : i \in I \})}(Y, Z)
\]

is continuous. Since \((X, X_0) \in (\mathcal{A}, \mathcal{A}_0)\), there exists \(i \in I \) such that \((X, X_0) \in (A^i, \mathcal{A}^i_0)\). This means that the map

\[
g^*|_{X_0} : X_0 \to C_{t(A^i, \mathcal{A}^i_0)}(Y, Z)
\]

is continuous. Also, since \(\cap \{ t(A^i, \mathcal{A}^i_0) : i \in I \} \subseteq t(A^i, \mathcal{A}^i_0)\), the identical map

\[
id : C_{t(\cap \{ t(A^i, \mathcal{A}^i_0) : i \in I \})}(Y, Z) \to C_{t(A^i, \mathcal{A}^i_0)}(Y, Z)
\]

is continuous. So, the map

\[
g^*|_{X_0} : X_0 \to C_{\cap \{ t(A^i, \mathcal{A}^i_0) : i \in I \}}(Y, Z)
\]

is continuous as a composition of continuous maps. Thus, the topology

\[
\cap \{ t(A^i, \mathcal{A}^i_0) : i \in I \}
\]

is \((\mathcal{A}, \mathcal{A}_0)\)-splitting.

(2) The proof of this is a corollary of the statement (1).

(3) The proof of this follows by the fact that the topology

\[
\bigvee \{ t(A^i, \mathcal{A}^i_0) : i \in I \}
\]

is \((\mathcal{A}, \mathcal{A}_0)\)-splitting. □

Theorem 2.9. Let \(t \) be an \((\mathcal{A}, \mathcal{A}_0)\)-admissible topology on \(C(Y, Z) \). If

\[
(C_t(Y, Z), C_t(Y, Z)) \in (\mathcal{A}, \mathcal{A}_0),
\]

then \(t \) is admissible and \(t(\mathcal{A}, \mathcal{A}_0) \subseteq t \).

Proof. Let \(\text{id} \equiv h : C_t(Y, Z) \to C_t(Y, Z) \) be the identical map. Clearly, this map is continuous. Since

\[
(C_t(Y, Z), C_t(Y, Z)) \in (\mathcal{A}, \mathcal{A}_0)
\]

and \(t \) is \((\mathcal{A}, \mathcal{A}_0)\)-admissible, the map \(h^\circ |_{C_t(Y, Z)} \equiv h^\circ : C_t(Y, Z) \times Y \to Z \) is continuous. Hence, the topology \(t \) is admissible.

Now, since the map \(h^\circ \equiv g : C_t(Y, Z) \times Y \to Z \) is continuous,

\[
(C_t(Y, Z), C_t(Y, Z)) \in (\mathcal{A}, \mathcal{A}_0),
\]

and the topology \(t(\mathcal{A}, \mathcal{A}_0) \) is \((\mathcal{A}, \mathcal{A}_0)\)-splitting, the map

\[
g^*|_{C_t(Y, Z)} = \text{id} : C_t(Y, Z) \to C_t(\mathcal{A}, \mathcal{A}_0)(Y, Z)
\]

is also continuous. Thus, \(t(\mathcal{A}, \mathcal{A}_0) \subseteq t \). □

Corollary 2.10. Let \(t \) be an \((\mathcal{A}, \mathcal{A}_0)\)-splitting and \((\mathcal{A}, \mathcal{A}_0)\)-admissible topology on \(C(Y, Z) \). If \((C_t(Y, Z), C_t(Y, Z)) \in (\mathcal{A}, \mathcal{A}_0) \), then \(t(\mathcal{A}, \mathcal{A}_0) = t \).

Proof. By Theorem 2.9, \(t(\mathcal{A}, \mathcal{A}_0) \subseteq t \). Also, since the topology \(t \) is \((\mathcal{A}, \mathcal{A}_0)\)-splitting, \(t \subseteq t(\mathcal{A}, \mathcal{A}_0) \). Thus, \(t(\mathcal{A}, \mathcal{A}_0) = t \). □
Theorem 2.11. Let Y be a regular locally compact space, \mathcal{A} the family of all T_1-spaces, $i = 0, 1, 2, 3, 3\frac{1}{2}$, \mathcal{A}_0 an arbitrary family of spaces containing subspaces of spaces of \mathcal{A}, $C_{t_{co}}(Y, Z) \in \mathcal{A}_0$, and $Z \in \mathcal{A}$. Then, we have $t(\mathcal{A}, \mathcal{A}_0) = t_{co} = t_{fs}$.

Proof. Since Y is a regular locally compact space, the compact open topology coincides with the Isbell topology on $C(Y, Z)$ and it is admissible. Hence, t_{co} is $(\mathcal{A}, \mathcal{A}_0)$-admissible. Also, the topology t_{co} is splitting and, therefore, t_{co} is $(\mathcal{A}, \mathcal{A}_0)$-splitting. Since $Z \in \mathcal{A}$, we have that $C_{t_{co}}(Y, Z) \in \mathcal{A}$ (see preliminaries) and, therefore, $(C_{t_{co}}(Y, Z), C_{t_{co}}(Z)) \in (\mathcal{A}, \mathcal{A}_0)$. Thus, by Corollary 2.10 we have that $t(\mathcal{A}, \mathcal{A}_0) = t_{co}$. □

Theorem 2.12. Let Y be a regular locally compact space, \mathcal{A} the family of all topological spaces whose weight is not greater than a certain fixed infinite cardinal, \mathcal{A}_0 an arbitrary family of spaces containing subspaces of spaces of \mathcal{A}, $C_{t_{co}}(Y, Z) \in \mathcal{A}_0$, and $Z \in \mathcal{A}$. Then, we have $t(\mathcal{A}, \mathcal{A}_0) = t_{co} = t_{fs}$.

Proof. The proof of this theorem is similar to the proof of Theorem 2.11 and follows by Corollary 2.10 and Theorem 3.4.16 of [6]. □

Theorem 2.13. Let Y be a regular second-countable locally compact space, \mathcal{A} the family of all metrizable spaces, \mathcal{A}_0 an arbitrary family of spaces containing subspaces of spaces of \mathcal{A}, $C_{t_{co}}(Y, Z) \in \mathcal{A}_0$, and $Z \in \mathcal{A}$. Then, we have $t(\mathcal{A}, \mathcal{A}_0) = t_{co} = t_{fs}$.

Proof. The proof of this theorem is similar to the proof of Theorem 2.11 and follows by Corollary 2.10 and Exercises 4.2.H and 3.4.E(c) of [6]. □

Theorem 2.14. Let Y be a regular locally compact κ-Lindelöf space, \mathcal{A} the family of all completely metrizable spaces, \mathcal{A}_0 an arbitrary family of spaces containing subspaces of spaces of \mathcal{A}, $C_{t_{co}}(Y, Z) \in \mathcal{A}_0$, and $Z \in \mathcal{A}$. Then, we have $t(\mathcal{A}, \mathcal{A}_0) = t_{co} = t_{fs}$.

Proof. The proof of this theorem is similar to the proof of Theorem 2.11 and follows by Corollary 2.10 and Exercise 4.3.F(a) of [6]. □

Theorem 2.15. Let Y be a corecompact space, \mathcal{A} the family of all T_i-spaces, where $i = 0, 1, 2$, \mathcal{A}_0 an arbitrary family of spaces containing subspaces of spaces of \mathcal{A}, $C_{t_{fs}}(Y, Z) \in \mathcal{A}_0$, and $Z \in \mathcal{A}$. Then, we have $t(\mathcal{A}, \mathcal{A}_0) = t_{fs}$.

Proof. Since Y is corecompact, the Isbell topology t_{fs} on $C(Y, Z)$ is admissible. Hence the topology t_{fs} is $(\mathcal{A}, \mathcal{A}_0)$-admissible. Also, the topology t_{fs} is splitting and, therefore, t_{fs} is $(\mathcal{A}, \mathcal{A}_0)$-splitting. Since $Z \in \mathcal{A}$, we have that $C_{t_{fs}}(Y, Z) \in \mathcal{A}$ (see preliminaries) and, therefore, $(C_{t_{fs}}(Y, Z), C_{t_{fs}}(Z)) \in (\mathcal{A}, \mathcal{A}_0)$. Thus, by Corollary 2.10 we have that $t(\mathcal{A}, \mathcal{A}_0) = t_{fs}$. □

Theorem 2.16. Let Y be a corecompact space, \mathcal{A} the family of all second-countable spaces, \mathcal{A}_0 an arbitrary family of spaces containing subspaces of spaces of \mathcal{A}, $C_{t_{fs}}(Y, Z) \in \mathcal{A}_0$, and $Y, Z \in \mathcal{A}$. Then, we have $t(\mathcal{A}, \mathcal{A}_0) = t_{fs}$.

Proof. The proof of this theorem is similar to the proof of Theorem 2.15 and follows by Corollary 2.10 and the fact that $C_{1t}(Y, Z) \in A$ (see [12]). \qed

3. ON DUAL TOPOLOGIES

Note 3. Let Y and Z be two fixed topological spaces. By $O_Z(Y)$ we denote the set

$$\{f^{-1}(U) : f \in C(Y, Z) \text{ and } U \in O(Z)\}.$$

Let $\mathcal{H} \subseteq O_Z(Y)$, $\mathcal{H} \subseteq C(Y, Z)$, and $U \in O(Z)$. We set

$$(\mathcal{H}, U) = \{f \in C(Y, Z) : f^{-1}(U) \in \mathcal{H}\}$$

and

$$(\mathcal{H}, U) = \{f^{-1}(U) : f \in \mathcal{H}\}.$$

Definition 3.1. (See [9]) Let τ be a topology on $O_Z(Y)$. The topology on $C(Y, Z)$, for which the set

$$\{(\mathcal{H}, U) : \mathcal{H} \in \tau, U \in O(Z)\}$$

is a subbasis, is called dual to τ and is denoted by $t(\tau)$.

Now, let t be a topology on $C(Y, Z)$. The topology on $O_Z(Y)$, for which the set

$$\{(\mathcal{H}, U) : \mathcal{H} \in t, U \in O(Z)\}$$

is a subbasis, is called dual to t and is denoted by $\tau(t)$.

We observe that if τ is a topology on $O_Z(Y)$ and σ a subbasis for τ, then the set $\{(\mathcal{H}, U) : \mathcal{H} \in \sigma, U \in O(Z)\}$ is a subbasis for $t(\tau)$ (see Lemma 2.5 in [9]). Also, if t is a topology on $C(Y, Z)$ and s a subbasis for t, then the set $\{(\mathcal{H}, U) : \mathcal{H} \in s, U \in O(Z)\}$ is a subbasis for $\tau(t)$ (see Lemma 2.6 in [9]).

Note 4. Let X be a space and $g : X \times Y \to Z$ a continuous map. If $g_x : Y \to Z$ is the map for which $g_x(y) = g(x, y)$, for every $y \in Y$, then by $\overline{\tau}$ we denote the map of $X \times O(Z)$ into $O_Z(Y)$, for which $\overline{\tau}(x, U) = g_x^{-1}(U)$ for every $x \in X$ and $U \in O(Z)$.

Now, let $h : X \to C(Y, Z)$ be a map. By \overline{h} we denote the map of $X \times O(Z)$ into $O_Z(Y)$, for which $\overline{h}(x, U) = (h(x))^{-1}(U)$ for every $x \in X$ and $U \in O(Z)$.

Definition 3.2. Let τ be a topology on $O_Z(Y)$. We say that a map $M : X \times O(Z) \to O_Z(Y)$ is continuous with respect to the first variable if for every fixed element U of $O(Z)$, the map $M_U : X \to (O_Z(Y), \tau)$, for which $M_U(x) = M(x, U)$ for every $x \in X$, is continuous.

Definition 3.3. A topology τ on $O_Z(Y)$ is called (A, A_0)-splitting if for every $(X, X_0) \in (A, A_0)$ the continuity of a map $g : X \times Y \to Z$ implies the continuity with respect to the first variable of the map $\overline{\tau}_{X_0 \times O(Z)} : X_0 \times O(Z) \to (O_Z(Y), \tau)$.

A topology τ on $O_Z(Y)$ is called (A, A_0)-admissible if for every $(X, X_0) \in (A, A_0)$ and for every map $h : X \to C(Y, Z)$ the continuity with respect to the first variable of the map $\overline{h} : X \times O(Z) \to (O_Z(Y), \tau)$ implies the continuity of
A topology \(\tau \) on \(\mathcal{O}_Z(Y) \) is \((\mathcal{A},\mathcal{A}_0)\)-splitting if and only if the topology \(t(\tau) \) on \(C(Y,Z) \) is \((\mathcal{A},\mathcal{A}_0)\)-splitting.

Proof. Suppose that the topology \(\tau \) on \(\mathcal{O}_Z(Y) \) is \((\mathcal{A},\mathcal{A}_0)\)-splitting, that is, for every pair \((X,X_0)\) in \((\mathcal{A},\mathcal{A}_0)\) the continuity of a map \(g : X \times Y \to Z \) implies the continuity with respect to the first variable of the map

\[
\mathcal{g}|_{X_0 \times \mathcal{O}(Z)} : X_0 \times \mathcal{O}(Z) \to (\mathcal{O}_Z(Y), \tau).
\]

We prove that the topology \(t(\tau) \) on \(C(Y,Z) \) is \((\mathcal{A},\mathcal{A}_0)\)-splitting. Let \((X,X_0)\) in \((\mathcal{A},\mathcal{A}_0)\) and \(g : X \times Y \to Z \) be a continuous map. We need to prove that \(g^*|_{X_0} : X_0 \to C_t(\tau)(Y,Z) \) is a continuous map.

Let \(x \in X_0 \) and \((\mathcal{H},U)\) be an open neighborhood of \((g^*|_{X_0})(x)\) in \(C_t(\tau)(Y,Z) \). We must find an open neighborhood \(V \) of \(x \) in \(X_0 \) such that \((g^*|_{X_0})(V) \subseteq (\mathcal{H},U) \). We have that \((g^*|_{X_0})(x))^{-1}(U) \in \mathcal{H} \). Since \((g^*|_{X_0})(x) = g_x \), we have \(g_x^{-1}(U) \in \mathcal{H} \). Since the map \(g^*|_{X_0} \) is continuous.

Conversely, suppose that \(t(\tau) \) is \((\mathcal{A},\mathcal{A}_0)\)-splitting. We prove that \(\tau \) is \((\mathcal{A},\mathcal{A}_0)\)-splitting. Let \((X,X_0)\) be an element of \((\mathcal{A},\mathcal{A}_0)\) and \(g : X \times Y \to Z \) a continuous map. It is sufficient to prove that \(\mathcal{g}|_{X_0 \times \mathcal{O}(Z)} : X_0 \times \mathcal{O}(Z) \to (\mathcal{O}_Z(Y), \tau) \) is continuous with respect to the first variable.

Let \(U \) be a fixed element of \(\mathcal{O}(Z) \). Consider the map \(\mathcal{g}|_{X_0 \times \mathcal{O}(Z)} : X_0 \to (\mathcal{O}_Z(Y), \tau) \). Let \(x \in X_0 \), \(\mathcal{H} \in \tau \), and \(\mathcal{g}|_{X_0 \times \mathcal{O}(Z)}(x) = g_x^{-1}(U) \in \mathcal{H} \). We need to find an open neighborhood \(V \) of \(x \) in \(X_0 \) such that \(\mathcal{g}|_{X_0 \times \mathcal{O}(Z)}(V) \subseteq \mathcal{H} \).

Consider the open set \((\mathcal{H},U)\) of the space \(C_t(\tau)(Y,Z) \). Since

\[
(\mathcal{g}|_{X_0 \times \mathcal{O}(Z)})(x) = g_x^{-1}(U) \in \mathcal{H},
\]

we have \(g_x \in (\mathcal{H},U) \). Since \(t(\tau) \) is \((\mathcal{A},\mathcal{A}_0)\)-splitting, the map \(g^*|_{X_0} : X_0 \to C_t(\tau)(Y,Z) \) is continuous. Hence, there exists an open neighborhood \(V \) of \(x \) in \(X_0 \) such that \((g^*|_{X_0})(V) \subseteq (\mathcal{H},U) \). Let \(x' \in V \). Then, \((g^*|_{X_0})(x') = g_{x'} \in (\mathcal{H},U) \), that is, \(g_{x'}^{-1}(U) \in \mathcal{H} \) or \((\mathcal{g}|_{X_0 \times \mathcal{O}(Z)})(x') \in \mathcal{H} \). Thus, \(\mathcal{g}|_{X_0 \times \mathcal{O}(Z)}(V) \subseteq \mathcal{H} \), which means that the map \(\mathcal{g}|_{X_0 \times \mathcal{O}(Z)} \) is continuous. □

Theorem 3.5. A topology \(t \) on \(C(Y,Z) \) is \((\mathcal{A},\mathcal{A}_0)\)-splitting if and only if the topology \(\tau(t) \) on \(\mathcal{O}_Z(Y) \) is \((\mathcal{A},\mathcal{A}_0)\)-splitting.

Proof. The proof of this theorem is similar to the proof of Theorem 3.4. □
Example 3.6.

1. The topologies \(\tau(t_{co}) \) and \(\tau(t_{ts}) \) are \((A, A_0)\)-splitting for every pair \((A, A_0)\). This follows by the fact that the topologies \(t_{co} \) and \(t_{ts} \) are splitting and, therefore, \((A, A_0)\)-splitting.

2. Let \(Z \) be the Sierpinski space, \(\Omega(Y) \) the Scott topology, and \(\Omega_Z(Y) \) the relative topology of \(\Omega(Y) \) on \(\Omega(Z)(Y) \). Then, the topology \(\tau(\Omega_Z(Y)) \) coincides with the Isbell topology on \(C(Y, Z) \). Hence, the topology \(\tau(\Omega_Z(Y)) \) is splitting and, therefore, \((A, A_0)\)-splitting. Thus, the topology \(\tau(t(\Omega_Z(Y))) \) on \(\Omega(Z)(Y) \) is \((A, A_0)\)-splitting.

Theorem 3.7. A topology \(\tau \) on \(\Omega(Z)(Y) \) is \((A, A_0)\)-admissible if and only if the topology \(t(\tau) \) on \(C(Y, Z) \) is \((A, A_0)\)-admissible.

Proof. Suppose that the topology \(\tau \) on \(\Omega(Z)(Y) \) is \((A, A_0)\)-admissible, that is, for every space \((X, X_0) \in (A, A_0)\) and for every map \(h : X \rightarrow C(Y, Z) \) the continuity with respect to the first variable of the map \(\overline{h} : X \times \Omega(Z) \rightarrow (C(Y, Z), \tau) \) implies the continuity of the map \(h^z_{X_0 \times Y} : X_0 \times Y \rightarrow Z \). We prove that \(t(\tau) \) is \((A, A_0)\)-admissible. Let \((X, X_0) \in (A, A_0)\) and \(h : X \rightarrow C(t(\tau))(Y, Z) \) be a continuous map. It is sufficient to prove that the map \(h^z_{X_0 \times Y} \) is continuous. Clearly, it suffices to prove that the map \(\overline{h} : X \times \Omega(Z) \rightarrow (C(Y, Z), \tau) \) is continuous with respect to the first variable.

Let \(x \in X, U \in \Omega(Z) \) and \(\mathcal{H} \in \tau \) such that \(\overline{h}_U(x) = \overline{h}(x, U) = (h(x))^{-1}(U) \in \mathcal{H} \). We prove that there exists an open neighborhood \(V \) of \(x \) in \(X \) such that \(\overline{h}_V(x) \subseteq \mathcal{H} \). Consider the open set \((\mathcal{H}, U) \) of the space \(C(t(\tau))(Y, Z) \). Then, \(h(x) \in (\mathcal{H}, U) \).

Since the map \(h : X \rightarrow C(t(\tau))(Y, Z) \) is continuous, there exists an open neighborhood \(V \) of \(x \) in \(X \) such that \(h(V) \subseteq (\mathcal{H}, U) \).

Let \(x' \in V \). Then \(h(x') \in (\mathcal{H}, U) \), that is \((h(x'))^{-1}(U) \in \mathcal{H} \) or \(h(x') \subseteq \mathcal{H} \). Thus, \(\overline{h}_V(x') \subseteq \mathcal{H} \), which means that \(\overline{h}_V \) is continuous.

Conversely, suppose that the topology \(t(\tau) \) is \((A, A_0)\)-admissible. We prove that the topology \(\tau \) is \((A, A_0)\)-admissible. Let \((X, X_0) \) be a pair of \((A, A_0)\) and \(h : X \rightarrow C(Y, Z) \) a map such that \(\overline{h} : X \times \Omega(Z) \rightarrow (C(Y, Z), \tau) \) is continuous with respect to the first variable. We need to prove that the map \(h^z_{X_0 \times Y} : X_0 \times Y \rightarrow Z \) is continuous.

Since \(t(\tau) \) is \((A, A_0)\)-admissible, it is sufficient to prove that the map \(h : X \rightarrow C(t(\tau))(Y, Z) \) is continuous.

Let \(x \in X, U \in \Omega(Z) \), and \(\mathcal{H} \in \tau \) such that \(h(x) \in (\mathcal{H}, U) \). Then, \((h(x))^{-1}(U) \in \mathcal{H} \). Since the map \(\overline{h}_U : X \rightarrow (C(Y, Z), \tau) \) is continuous, there exists an open neighborhood \(V \) of \(x \) in \(X \) such that \(\overline{h}_U(V) \subseteq \mathcal{H} \).

Let \(x' \in V \). Then, \(h_U(x') = (h(x'))^{-1}(U) \in \mathcal{H} \) or \(h(x') \in (\mathcal{H}, U) \). Thus, \(h(V) \subseteq (\mathcal{H}, U) \), which means that the map \(h \) is continuous.

Theorem 3.8. A topology \(t \) on \(C(Y, Z) \) is \((A, A_0)\)-admissible if and only if the topology \(\tau(t) \) on \(\Omega(Z)(Y) \) is \((A, A_0)\)-admissible.

Proof. The proof of this theorem is similar to the proof of Theorem 3.7.
Example 3.9.

1. If Y is a regular locally compact space, then the topology $\tau(t_{co})$ is $(\mathcal{A}, \mathcal{A}_0)$-admissible for every pair $(\mathcal{A}, \mathcal{A}_0)$.

2. If Y is a corecompact space, then the topology $\tau(t_{Is})$ is $(\mathcal{A}, \mathcal{A}_0)$-admissible for every pair $(\mathcal{A}, \mathcal{A}_0)$.

3. If Y is a locally bounded space, then the topology $\tau(t_{Is})$ is $(\mathcal{A}, \mathcal{A}_0)$-admissible for every pair $(\mathcal{A}, \mathcal{A}_0)$.

4. Let $\Omega(Y)$ be the Scott topology on $O(Y)$. By $\Omega(Z)$ we denote the relative topology of $\Omega(Y)$ on $\Omega(Z)$. If Y is corecompact, then the topology $\Omega(Z)$ is admissible (see Corollary 3.12 of [9]) and, therefore, it is $(\mathcal{A}, \mathcal{A}_0)$-admissible. Thus, the topology $t(\Omega(Z))$ on $C(Y, Z)$ is $(\mathcal{A}, \mathcal{A}_0)$-admissible.

Theorem 3.10. Let \mathcal{A} and \mathcal{A}_0 are arbitrary families of spaces such that every element $X_0 \in \mathcal{A}_0$ is a subspace of an element $X \in \mathcal{A}$. Then in the set $O(Z)$ there exists the greatest $(\mathcal{A}, \mathcal{A}_0)$-splitting topology.

Proof. Let $\{\tau_i : i \in I\}$ be the set of all $(\mathcal{A}, \mathcal{A}_0)$-splitting topologies on $O(Z)$. We consider the topology $\tau = \vee \{\tau_i : i \in I\}$.

It is not difficult to prove that this topology is $(\mathcal{A}, \mathcal{A}_0)$-splitting. By this fact we have that this topology is the required greatest $(\mathcal{A}, \mathcal{A}_0)$-splitting topology. □

References

RECEIVED FEBRUARY 2009

ACCEPTED MARCH 2009

D. N. GEORGIOU (georgiou@math.upatras.gr)
Department of Mathematics, University of Patras, 265 04 Patras, Greece