Extending maps between pre-uniform spaces

Adalberto García-Máynez and Rubén Mancio-Toledo

Abstract

We give sufficient conditions on a uniformly continuous map \(f: (X, U) \to (Y, V) \) between completable \(T_1 \)-pre-uniform spaces \((X, U) \) and \((Y, V) \) to have a continuous or a uniformly continuous extension \(\hat{f}: \hat{X} \to \hat{Y} \) between the corresponding completions.

2010 MSC: 54A20, 54E15

Keywords: Minimal, round, pre-uniform, completion, extension

1. Preliminary results

The basic concepts used in this paper: pre-uniformity bases, Cauchy or minimal filters, round, weakly round or strongly round filters and completion conditions are given in [1]. The concept of pre-uniform basis appeared in 1970 under the name of structure [3]. However, non Hausdorff pre-uniform spaces were very seldom considered in Harris monography.

\(T_1 \)-pre-uniform spaces have an important property: Every Cauchy filter contains a unique weakly round filter and every neighborhood filter is weakly round. The set of weakly round filters \(\hat{X} \) of a \(T_1 \)-pre-uniform space has a complete \(T_1 \)-pre-uniform basis \(\hat{U} \) such that the map \(h: (X, U) \to (\hat{X}, \hat{U}) \) which assigns to each \(x \in X \) its neighborhood filter is a uniform embedding. Hence, any uniformly continuous map \(\varphi: (X, U) \to (Y, V) \) between \(T_1 \)-pre-uniform spaces induces a map \(\hat{\varphi}: (\hat{X}, \hat{U}) \to (\hat{Y}, \hat{V}) \) which sends every weakly round filter \(\xi \in \hat{X} \) into the unique weakly round filter \(N \) in \(\hat{Y} \) which is contained in the Cauchy filter

\[\varphi(\xi) = \{ \varphi(L) \mid L \in \xi \}^+ \]

(For every subfamily \(G \) of the power set of a set \(Z \), we define \(G^+ = \{ L \subseteq Z \mid \text{for some } G \in G, G \subseteq L \} \)). If \(k: (Y, V) \to (\hat{Y}, \hat{V}) \) is the canonical uniform
embedding, i.e. \(k(y) = \) neighborhood filter of \(y \), we have the relation \(\hat{\varphi} \circ h = \hat{k} \circ \varphi \). In this paper, we find conditions on \(\varphi, U \) and \(V \) which insure that \(\hat{\varphi} \) is continuous or uniformly continuous.

2. Main results

We start this section with a lemma.

Lemma 2.1. Let \((X, U) \) be a \(T_1 \)-pre-uniform space and suppose \((X, \tau_u) \) is a \(T_1 \)-space. Then every Cauchy filter \(\xi \) in \((X, U) \) contains a unique minimal filter \(\xi' \).

Proof. We know \(\xi' = \{ S_T^{**}(\xi, \alpha) \mid \alpha \in U \} \) is \(U \)-minimal and is contained in \(\xi \), where

\[
S_T^{**}(\xi, \alpha) = \bigcup \{ L \mid L \in \alpha \cap \xi \}.
\]

Suppose \(\mathcal{N} \subseteq \xi \) is another \(U \)-minimal filter.

Therefore, \(\mathcal{N}' = \mathcal{N} \subseteq \xi' \). The minimal property of \(\xi' \) implies that \(\mathcal{N}' = \mathcal{N} = \xi' \). \(\square \)

We give two cases in which \(\hat{\varphi} \) is uniformly continuous.

Lemma 2.2. Suppose for each \(\xi \in \tilde{X} - h(X), \varphi(\xi) = \varphi(\xi)' \). Then \(\hat{\varphi} \) is uniformly continuous.

Proof. Let \(\beta \in V \) and let \(\alpha \in U \) be such that \(\alpha \leq \varphi^{-1}(\beta) \). We shall prove that \(\hat{\alpha} \leq \hat{\varphi}^{-1}(\hat{\beta}) \). Let \(A \in \alpha \) and \(B \in \beta \) be such that \(A \subseteq \varphi^{-1}(B) \). We claim that \(\hat{A} \subseteq \hat{\varphi}^{-1}(\hat{B}) \). Let us take \(\xi \in \hat{A} \). Then \(\hat{A} \subseteq \hat{\varphi}^{-1}(\hat{B}) \). We claim that \(\hat{A} \subseteq \hat{\varphi}^{-1}(\hat{B}) \). Let us take \(\xi \in \hat{\varphi}(\xi)' \). Then \(\hat{A} \subseteq \hat{\varphi}^{-1}(\hat{\varphi}(\xi)) \). Since \(\varphi(A) \subseteq B \), we have also \(B \in \varphi(\xi) \). Therefore, \(\hat{\varphi}(\xi) = \varphi(\xi) \in \hat{B} \) and the proof is complete. \(\square \)

Lemma 2.3. If \((Y, V) \) is a semi-uniform space, \(\hat{\varphi} \) is uniformly continuous.

Proof. Let \(\beta \in V \). Since \((Y, V) \) is a semi-uniform space, there exists a cover \(\gamma \in V \) which satisfies the following condition:

Su For each \(C \in \gamma \), there exists \(\delta_C \in V \) and \(B_C \in \beta \) such that \(S_T(C, \delta_C) \subseteq B_C \).

Let \(\alpha \in U \) be such that \(\alpha \leq \varphi^{-1}(\gamma) \). We shall prove that \(\hat{\alpha} \leq \hat{\varphi}^{-1}(\hat{\beta}) \). If \(A \in \alpha \), there exists a set \(C \in \gamma \) such that \(A \subseteq \varphi^{-1}(C) \). By condition **Su**, there exist \(\delta_C \in V \) and \(B_C \in \beta \) such that \(S_T(C, \delta_C) \subseteq B_C \). We claim that \(\hat{A} \subseteq \hat{\varphi}^{-1}(\hat{B}_C) \). If \(\xi \in \hat{A} \), we have \(A \in \xi \). Since \(\varphi(A) \subseteq C \), we have \(C \in \varphi(\xi) \). Therefore, \(S_T(C, \delta_C) \subseteq \varphi(\xi) \). Since \(S_T(C, \delta_C) \subseteq B_C \), we conclude that \(B_C \in \varphi(\xi) \) and \(\hat{\varphi}(\xi) \in \hat{B}_C \). \(\square \)

Lemma 2.4. Let \(X, Y \) be \(T_2 \)-spaces and let \(U, V \), respectively, be the families of densely finite covers of \(X, Y \). Let \(\varphi: X \to Y \) be continuous, open and surjective. Then \(\varphi \) is uniformly continuous as a map from \((X, U) \) onto \((Y, V) \).
Lemma 2.6. A non-adherent filter \mathcal{T} in (X,U) is U-round if and only if \mathcal{T} has as a basis an ultrafilter of open sets.

Proof. Suppose \mathcal{T} is a non-adherent round filter in (X,U). Let \mathcal{G} be the family of open sets in \mathcal{T} and take an open set V such that $V \cap G \neq \emptyset$ for every $G \in \mathcal{G}$. We have to prove that $V \in \mathcal{T}$ and that will convert \mathcal{G} into an ultrafilter of open sets.

Since \mathcal{T} is non-adherent, the family $\{X - F^- | F \in \mathcal{T}\}$ is an open cover of X. Hence, $\alpha = \{V, X - V^- \} \cup \{X - F^- | F \in \mathcal{T}\}$ is a densely finite cover of X. Since \mathcal{T} is U-Cauchy, we have $V \in \mathcal{T}$ or $X - V^- \in \mathcal{T}$. If we had $X - V^- \in \mathcal{T}$, we use the roundness of \mathcal{T} and find a cover $\beta \in U$ such that $X - V^- \supseteq S_{\mathcal{T}}^*(\mathcal{T}, \beta) = \cup \{B \in \beta | B \cap F \neq \emptyset \}$ for every $F \in \mathcal{T}$). If $G \in \beta \cap \mathcal{T}$, we have $G \subseteq X - V^-$ and hence $V \cap G = \emptyset$, a contradiction. Therefore we must have $V \in \mathcal{T}$ and \mathcal{G} is an ultrafilter of open sets.
Conversely, suppose \mathcal{G} is an ultrafilter of open sets. We have to prove that \mathcal{T} is \mathcal{U}-round. We prove first that \mathcal{T} is \mathcal{U}-Cauchy. Let $\alpha \in \mathcal{U}$. If $\mathcal{T} \cap \alpha = \emptyset$, then $A \notin \mathcal{T} \cap \tau$ for every $A \in \alpha$. Let $\{A_1,A_2,\ldots,A_n\} \subseteq \alpha$ be such that $X = A_1^- \cup A_2^- \cup \cdots \cup A_n^-$. Since $A_i \notin \mathcal{T} \cap \tau$ and $\mathcal{T} \cap \tau$ is an ultrafilter of open sets, we can find elements $G_i \in \mathcal{T} \cap \tau$ such that $A_i \cap G_i = \emptyset$ ($i = 1,2,\ldots,n$). Hence $(G_1 \cap G_2 \cap \cdots \cap G_n) \cap (A_1 \cup A_2 \cup \cdots \cup A_n) = \emptyset$. But $A_1 \cup A_2 \cup \cdots \cup A_n$ is dense in X. Hence $G_1 \cap G_2 \cap \cdots \cap G_n = \emptyset$, a contradiction. We finally prove that \mathcal{T} is \mathcal{U}-round. Pick any element $F_0 \in \mathcal{T}$ and consider the cover $\alpha = \{F_0\} \cup \{X - F^- \mid F \in \mathcal{T}\}$. Clearly $S_T^*(\mathcal{T},\alpha) = F_0$ and hence \mathcal{T} is \mathcal{U}-round.

In [4] it is proved that every Cauchy filter in (X,\mathcal{U}), where \mathcal{U} is the family of densely finite covers of the Hausdorff space (X,τ), contains an \mathcal{U}-round filter and by [1], (X,\mathcal{U}) has a completion $(\hat{X},\hat{\mathcal{U}})$ where every $\hat{\mathcal{U}}$-round filter is convergent and the topology $\tau_{\hat{\mathcal{U}}}$ is Hausdorff closed. Besides the completion $(\hat{X},\hat{\mathcal{U}})$, (X,τ) has the Katetov extension kX, which is also Hausdorff closed. In this volume we prove that in general, the extensions \hat{X} and kX are non-equivalent.

3. Applications

Proposition 3.1. Let X be a separable, metrizable, dense in itself, 0-dimensional space and let Z be a compact, Hausdorff, separable space. Then there exists a surjective continuous map $g : \hat{X} \to Z$, where \hat{X} is the completion of the pre-uniformity basis of X consisting of all densely finite covers of X.

Proof. The hypothesis imply the existence of mutually disjoint non-empty open sets L_1,L_2,\ldots such that $X = \bigcup_{n=1}^{\infty} L_n$. The map $\varphi : X \to \mathbb{N}$ where $L_n = \varphi^{-1}(n)$ for each $n \in \mathbb{N}$, is continuous, open and surjective. By 2.4, there exists a continuous surjective extension $\hat{\varphi} : \hat{X} \to \hat{\mathbb{N}}$. But $\hat{\mathbb{N}}$ coincides with the Stone-Čech compactification $\beta \mathbb{N}$ of \mathbb{N} (because a cover α of \mathbb{N} is densely finite if and only if it is finite). On the other hand, by the universal property of $\beta \mathbb{N}$, there exists a continuous surjective map $\psi : \beta \mathbb{N} \to Z$. Hence, $g = \psi \circ \hat{\varphi}$ is a continuous surjective map from \hat{X} onto Z. \hfill \Box

Proposition 3.2. Let X be a non-empty completely metrizable separable space. Then there exists a continuous surjective map $\psi : (\mathbb{N}^\omega)^\rightarrow \to \hat{X}$.

Proof. \mathbb{N}^ω may be identified with the set of irrationals numbers and this space satisfies the conditions of (3.1). On the other hand, there exists a continuous open surjective map $\varphi : \mathbb{N}^\omega \to X$ (see 5.15 in [2]). Using 2.4, we complete the proof. \hfill \Box

Corollary 3.3. If Z is a Tychonoff separable space which is either compact or completely metrizable, then there exists a continuous surjective map $\psi : (\mathbb{N}^\omega)^\rightarrow \to \hat{Z}$.

24 A. García-Márquez and R. Mancio-Toledo
We finish this paper with a problem:

\textit{Problem 3.4.} Is every Čech-complete separable space a continuous image of \((\mathbb{N}^\omega)\) ?

\begin{thebibliography}{99}

\end{thebibliography}

(Received January 2010 – Accepted January 2011)

A. García-Máynez (agmaynez@matem.unam.mx)
Instituto de Matemáticas, Universidad Nacional Autónoma de México, Área de la Investigación Científica, Circuito Exterior, Ciudad Universitaria, 04510 México, D.F. México

Rubén Mancio-Toledo (rmancio@esfm.ipn.mx)
Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Col. Lindavista, 07738 México, D.F.