Epimorphisms and maximal covers in categories of compact spaces

B. Banaschewski and A. W. Hager

ABSTRACT

The category C is "projective complete" if each object has a projective cover (which is then a maximal cover). This property inherits from C to an epireflective full subcategory R provided the epimorphisms in R are also epi in C. When this condition fails, there still may be some maximal covers in R. The main point of this paper is illustration of this in compact Hausdorff spaces with a class of examples, each providing quite strange epimorphisms and maximal covers. These examples are then dualized to a category of algebras providing likewise strange monics and maximal essential extensions.

2010 MSC: Primary 06F20, 18G05, 54B30; Secondary 18A20, 18B30, 54C10, 54G05

Keywords: Epimorphism, cover, projective, essential extension, compact, strongly rigid.

1. INTRODUCTION

In a category, an essential extension of an object A is a monomorphism $A \xrightarrow{m} B$ for which km monic implies k monic. In recent work [3], the authors have considered the inheritance from a category C to a monocoreflective subcategory V of the property that each object has a unique maximal essential extension. The hypothesis "each monic in V is also monic in $C" was crucial. (The property was deployed to similar ends in [9].) This paper is largely directed at exhibiting in a concrete setting some pathology which can occur in the absence of these hypotheses.

But we shall operate "in dual", as we now describe briefly, and sketch a return to essential extensions in the final §5.
In a category, a cover of the object X is an epimorphism $Y \xrightarrow{g} X$ for which gf epi implies that f is epi. (This definition is dual to "essential extension"). Any projective cover is also a unique maximal cover (2.3). But there are categories with no projectives, and still every object has a unique maximal cover ([3], in dual.)

In compact Hausdorff spaces, Comp, epis are onto and every object has a projective cover (the Gleason cover). For an epireflective subcategory \mathcal{R} of Comp, \mathcal{R} has a non-void projective if and only if epis in \mathcal{R} are onto (3.5) and then the projective covers from Comp are projective covers in \mathcal{R} (3.2).

We begin with a necessary discussion of simple categorical preliminaries, proceed to Comp and two specific epireflective subcategories, then extract what little can be said for an epireflective \mathcal{R} in general. Penultimately, we consider a strongly rigid $E \in \text{Comp}$ and the epireflective subcategory $\mathcal{R}(E)$ which E generates. There are epis not onto, and any nonconstant $E \rightarrow \{0,1\}$ is a maximal cover. Finally, we sketch the dualization of this to a category of algebras, in which any proper $C(E) \rightarrow \mathbb{R}^2$ is a maximal essential extension.

We thank Horst Herrlich and Miroslav Hušek for alerting us to strongly rigid spaces.

2. Preliminaries

The context for 2.1 - 2.7 is a fixed category with no hypotheses at all before 2.4. In the following, g,h,k,\ldots are assumed to be morphisms. The terms "morphism" and "map" will be interchangeable.

Definition 2.1.

(a) A morphism g is an epimorphism (epi) if $hg = kg$ implies $h = k$.

(b) The map g is "covering" if epi, and gf epi implies f epi. (Such g could also be called essential epi (or perhaps co-essential epi).) A cover of object X is a pair (X, g) with $Y \xrightarrow{g} X$ covering. Covers of X, (Y, g) and (Y', g') are equivalent if there is an isomorphism h with $g'h = g$.

(c) Object Y is cover-complete if, (Z, k) a cover of Y implies k is an isomorphism. A maximal cover of X is a cover (Y, g) with Y cover complete. A unique maximal cover of X is a maximal cover which is equivalent to any other maximal cover of X.

(d) Object P is projective if whenever $X \xrightarrow{h} P$ and $X \xrightarrow{g} Y$ is an epi, then there is $Y \xrightarrow{f} P$ with $gf = h$. A projective cover is a cover (P, p) with P projective.

(e) The category is called projectively complete if every object has a projective cover, and (weaker) is said to have enough projectives if for each object X there is $X \xrightarrow{f} P$, f epi and P projective.

The following two elementary propositions are, except for 2.2 (d) and perhaps 2.3 (b), proved (in dual) in [1], 9.14, 9.19, 9.20.
Proposition 2.2.
(a) An isomorphism is covering.
(b) The composition of two covering maps is covering.
(c) If \(g \) and \(gf \) are covering, then \(f \) is covering.
(d) If \(gf \) is covering and \(f \) is epi, then \(f \) is covering.

Proof.
(d) Given such \(gf \) and \(f \), suppose \(fh \) is epi. Note that \(g \) is epi (because \(gf \) is). So, \(g(fh) \) is epi, and \(g(fh) = (gf)h \) shows \(h \) is epi, since \(gf \) is covering.

□

Proposition 2.3.
(a) A projective object is cover-complete.
(b) A projective cover is a unique maximal cover.

Proof.
(b) Suppose \((P, p)\) is a projective cover of \(X \). It is a maximal cover by (a). If \((Y, g)\) is another cover of \(X \), there is \(k \) with \(gk = p \) (since \(P \) is projective and \(g \) is epi). By 2.2 (c), \(k \) is covering, thus an isomorphism if \(Y \) is cover-complete.

□

To proceed further, we require assumptions.

Two Hypotheses 2.4. (to be invoked selectively). Let \(C \) be a category, and \(\mathcal{R} \) a subcategory (always assumed full and isomorphism-closed).

The first condition is on \(C \) alone, and is “the other face” of 2.2 (d):

\((F^o)\) If \(gf \) is covering and \(f \) is epi, then \(g \) is covering

The second condition is on \(\mathcal{R} \subseteq C \), and is the (frequently invalid) converse to the obvious truth “Any \(C \)-epi between \(\mathcal{R} \)-objects is \(\mathcal{R} \)-epi”:

\((S^o)\) Any \(\mathcal{R} \)-epi is \(C \)-epi.

The point of this paper is, in the presence of \((F^o)\), what happens when \((S^o)\) holds (2.7 and §3), and especially what can happen when it fails (§5, §6).

Proposition 2.5. If \(C \) has enough projectives (in particular if \(C \) is projectively complete), then \(C \) satisfies \((F^o)\).

Proof. Consider \(X \xrightarrow{g} Y \xrightarrow{f} Z \) with \(gf \) covering and \(f \) epi. Since \(gf \) is epi, so is \(g \). Suppose \(Y \xrightarrow{t} T \) has \(gt \) epi; we want \(t \) epi. Take \(T \xrightarrow{e} P \) epi with \(P \) projective. There is \(Z \xrightarrow{h} P \) with \(fh = te \) (since \(f \) is epi). Then, \((gf)h = g(fh) = g(te) = (gt)e \). The last term is epi, and so also the first term. Thus \(h \) is epi (since \(gf \) is covering), and so also \(fh \). Since \(fh = te \), \(t \) is epi. □
Proposition 2.6. Suppose \((S^\circ)\). If \(X, Y \in \mathcal{R}\), and \(X \xrightarrow{g} Y\) is \(\mathcal{C}\)-covering, then \(g\) is \(\mathcal{R}\)-covering.

Proof. Suppose given \(X \xrightarrow{g} Y\) as stated, and \(Y \xrightarrow{f} Z\) with \(Z \in \mathcal{R}\) and \(gf\) \(\mathcal{R}\)-epi. Then \(gf\) is \(\mathcal{C}\)-epi (by \((S^\circ)\)), so \(f\) is \(\mathcal{C}\)-epi (since \(g\) is \(\mathcal{C}\)-covering), thus also \(\mathcal{R}\)-epi (as desired).

We say \((\mathcal{R}, r)\) is epireflective in \(\mathcal{C}\) if \(\mathcal{R}\) is a subcategory of \(\mathcal{C}\), and for each \(Y \in \mathcal{C}\) there is \(rY \in \mathcal{R}\) (the reflection) and \(\mathcal{R}\)-epi \(fr\) \(\mathcal{C}\)-epi (by \((S^\circ)\)), so \(f\) is \(\mathcal{C}\)-epi (since \(g\) is \(\mathcal{C}\)-covering), thus also \(\mathcal{R}\)-epi (as desired).

Proposition 2.7. Suppose that \((\mathcal{R}, r)\) is epireflective in \(\mathcal{C}\), and satisfies \((S^\circ)\).

(a) If \(P\) is projective in \(\mathcal{C}\), then \(rP\) is projective in \(\mathcal{R}\).
(b) Suppose further that \(\mathcal{C}\) satisfies \((F^\circ)\). If \(X \in \mathcal{R}\), and \((P, p)\) is a projective cover in \(\mathcal{C}\) of \(X\), then \((rP, \bar{p})\) is a projective cover in \(\mathcal{R}\) of \(X\).
(c) If \(\mathcal{C}\) is projectively complete, then so is \(\mathcal{R}\) (with projective covers as in \((b)\)).

Proof. (c) (from \((b)\)). 2.5 says \(\mathcal{C}\) satisfies \((F^\circ)\), so \((b)\) applies.

(a) Suppose given \(\mathcal{R}\)-epi \(X \xrightarrow{g} Y\) and any \(X \xrightarrow{f} rP\). By \((S^\circ)\), \(g\) is \(\mathcal{C}\)-epi, so there is \(f_1\) with \(gf_1 = frP\) (since \(P\) is \(\mathcal{C}\)-projective). Next, there is \(f_2\) with \(f_2rP = f_1\), and we have \(frP = gf_1 = g(f_2rP) = (gf_2)rP\). Since \(rP\) is \(\mathcal{C}\)-epi, \(f = gf_2\).

(b) By \((a)\), \(rP\) is \(\mathcal{R}\)-projective. We need that the \(\bar{p}\) in \(\bar{p}rP = p\) is \(\mathcal{R}\)-covering. Since \(rP\) is epi, \((F^\circ)\) says that \(\bar{p}\) is \(\mathcal{C}\)-covering, and thus \(\mathcal{R}\)-covering by 2.5.

Remark 2.8.

(a) [3], 1.2 shows (in dual) that if \(\mathcal{C}\) has unique maximal covers, so does epireflective \(\mathcal{R}\), assuming the conditions \((S^\circ)\) and \((F^\circ)\). The proofs above of 2.7 \((a)\) and \((b)\) are simplified versions of those in [3]. For 2.7 \((c)\), the present 2.7 (new here) allows suppression of the hypothesis \((F^\circ)\).

(b) If in 2.7, \(\mathcal{R}\) already contains every \(\mathcal{C}\)-projective, then 2.7 \((a)\) and \((b)\) simplify in the obvious way. This is the case for \(\mathcal{C} = \text{Comp}\), with \(\mathcal{R}\) having \((S^\circ)\); see 3.2 below.

3. Compact Hausdorff Spaces

\(\text{Comp}\) is the category of compact Hausdorff spaces with continuous functions as maps. A map \(X \xrightarrow{f} Y\) in \(\text{Comp}\) is called irreducible if \(f(Y) = X\), but when \(F \subseteq Y\) (\(F\) closed), \(f(F) \neq X\). The following is mostly due to Gleason.
Proposition 3.1. In Comp:

(a) Epis are onto. (See comment after 3.3 below.)
(b) A map is covering iff it is irreducible.
(c) A space is projective iff it is extremally disconnected (every open set has open closure).
(d) Any object X has a projective cover (PX, p_X); Comp is projectively complete.
(e) (F^e) holds.

The notation $(P X, p_X)$ is reserved for the rest of the paper; this will always denote the projective cover in Comp of $X \in \text{Comp}$. Also, for brevity, we shall let ED stand for the class of extremally disconnected spaces in Comp.

(Considerable literature developed from Gleason’s [6], with various new proofs, generalizations, and variants of the theory. See [2], [8], [14] and their bibliographies.)

Now consider a subcategory A of Comp (which can be identified with its object class). The family of all subobjects (resp., products) of spaces in A is denoted S_A (resp., P_A). (Note that subobjects are closed subspaces.) Kennison [13] has shown that R is epireflective in Comp iff R is neither \emptyset nor $\{\emptyset\}$ and $R = SP_R$. For $\emptyset \neq X \in \text{Comp}$, let $R(X) = SP\{X\}$; this is the smallest epireflective subcategory containing X.

Let $\{0\}$ (resp., $\{0, 1\}$) denote the space with one (resp. two) points. The smallest epireflective is $R(\{0\}) = \{\emptyset, \{0\}\}$; here, $\{0\} \rightarrow \emptyset$ is epi, so epis are not onto. We comment further on this shortly. The next largest is $R(\{0, 1\})$: if R is epireflective and not $R(\{0\})$, there is $X \in R$ with $|X| \geq 2$, thus $\{0, 1\} \in R$, so $R(\{0, 1\}) \subset R$. Note that $R(\{0, 1\}) = \text{Comp}_0$, the class of compact zero-dimensional spaces [5], and $\text{ED} \subset \text{Comp}_0$ [7]. Thus, if R is epireflective and not $R(\{0\})$, $\text{ED} \subset R$.

Corollary 3.2. Suppose R is epireflective and R-epis are onto (i.e., $R \subset \text{Comp}$ satisfies (S^e)). Then R is projectively complete. In fact, for any $X \in R$, the R-(projective cover) is (PX, p_X).

Proof. Apply 3.1, 2.4, and the discussion above. \qed

Proposition 3.3. Comp_0-epis are onto. 3.2 applies to Comp_0.

Proof. The following takes place in Comp_0.

The only $\emptyset \rightarrow Y$ has $Y = \emptyset$ and the map is the identity, which is epi, and technically onto. If $X \neq \emptyset$ then $X \rightarrow \emptyset$ is not epi (since there are different $\{0, 1\} \xrightarrow{h} X$).

Suppose $X \neq \emptyset$, and $X \xrightarrow{g} Y$ is epi. Were g not onto, there would be $p \in X - g(Y)$, and clopen U with $p \notin U \supseteq g(Y)$. Then h constantly 1 and k the characteristic function of U has $h \neq k$ but $hg = kg$. \qed
(To show Comp-epis are onto, argue similarly using $[0, 1]$ instead of $\{0, 1\}$, and using complete regularity of X (i.e. the Tietze-Urysohn Theorem).)

Remark 3.4. We do not know if there is epireflective \mathcal{R} different from Comp_0 and Comp, for which epis are onto.

The following (closely related to [3], 4.1) shows that, failing "epis are onto", there are no $\neq \emptyset$ projectives. But there still may be some maximal covers, of at least two sorts, as the examples in §5 show.

Proposition 3.5. Suppose (only) $\{0\} \in \mathcal{R}$. The following statements in \mathcal{R} are equivalent.

(a) Epis are onto.
(b) $\{0\}$ is projective.
(c) There is a non-void projective.

Proof. (b) \Rightarrow (c) obviously, and (c) \Rightarrow (b) because $\{0\}$ is a retract of any $X \neq \emptyset$, and a retract of a projective is projective.

(a) \Rightarrow (b) because $\{0\}$ is projective in Comp, and if (a) holds, projective in \mathcal{R}.

(b) \Rightarrow (a). If $X \xleftarrow{g} Y$ is an epi which is not onto, then there is $p \in X - g(Y)$, and for $X \xleftarrow{h} \{0\}$ defined as $h(0) = p$, there can be no $Y \xleftarrow{f} \{0\}$ with $gf = h$. \qed

Finally, we clarify the situation for \emptyset and for $\mathcal{R}(\{0\})$.

Note the following for any $\mathcal{R} \subseteq \text{Comp}$ with $\emptyset \in \mathcal{R}$.

(i) \emptyset is the initial object of \mathcal{R}, i.e., for any $X \in \mathcal{R}$, there is unique $X \leftarrow \emptyset$ (namely, the empty map).

(ii) \emptyset is projective in \mathcal{R}.

(iii) If $X \leftarrow \emptyset$ is epi in \mathcal{R}, then this is a projective cover.

Proposition 3.6. Suppose (only) $\{0\} \in \mathcal{R} = \mathcal{R}$. The following statements in \mathcal{R} are equivalent.

(a) $\mathcal{R} = \mathcal{R}(\{0\})$
(b) $\{0\} \rightarrowtail \emptyset$ is epi (and thus a projective cover).
(c) For any $X \in \mathcal{R}$, $X \rightarrowtail \emptyset$ is epi (and thus a projective cover).

Proof. The parenthetical remarks follow from the comments above.

(a) \Rightarrow (c): $\emptyset \rightarrowtail \emptyset$ is epi, and $\{0\} \rightarrowtail \emptyset$ also, since the only map out of $\{0\}$ is the identity.

(c) \Rightarrow (b): since $\{0\} \in \mathcal{R}$.

(b) \Rightarrow (a): If $\mathcal{R} \neq \mathcal{R}(\{0\})$, then there is $X \in \mathcal{R}$ with $|X| \geq 2$, so $\{0, 1\} \in \mathcal{R}$ (since $\mathcal{R} = \mathcal{R}$). Then there are different $\{0, 1\} \xleftarrow{h} \{0\}$ which compose equally with $\{0\} \xrightarrow{k} \emptyset$, so the latter is not epi. \qed
Corollary 3.7. $\mathcal{R}(\{0\})$ is projectively complete, with epis not onto, and is the only epireflective subcategory with these two properties.

Proof. 3.6, (a) \Rightarrow (c) yields the first statement. If epireflective \mathcal{R} has epis not onto, then by 3.5, the only projective is \emptyset. If \mathcal{R} is projectively complete, then the projective cover must be $X \twoheadrightarrow \emptyset$. So these are epi, and 3.6 (c) \Rightarrow (a) says $\mathcal{R} = \mathcal{R}(\{0\})$. □

4. When epis may not be onto

Consider $\mathcal{R} \subset \text{Comp}$. We localize the condition "\mathcal{R}-epis are onto". Keep in mind that \mathcal{R} might have no projectives (but any $Y \in \mathcal{R} \cap \text{ED}$ is still Comp-projective).

Definition 4.1. "X has $e(\mathcal{R})$" means $X \in \mathcal{R}$, and whenever $X \twoheadrightarrow Y$ is epi in \mathcal{R}, then g is onto.

Proposition 4.2. Suppose $\mathcal{R} = S\mathcal{R}$.
(a) If $X \in \mathcal{R} \cap \text{Comp}_{\text{po}}$, then X has $e(\mathcal{R})$.
(b) If $Y \in \mathcal{R} \cap \text{ED}$, then Y is cover-complete in \mathcal{R}.

Proof.
(a) Identical to the proof of 3.3.
(b) If (Z, g) is an \mathcal{R}-cover of Y, then g is onto by (a), so there is f with $gf = \text{id}_Y$, since Y is Comp-projective, and $f \in \mathcal{R}$ (since $Y, Z \in \mathcal{R}$). So f is an \mathcal{R}-section. Also, by 2.2, f is an \mathcal{R}-covering map, thus \mathcal{R}-epi. So f is an \mathcal{R}-isomorphism, so is g, and therefore g is a Comp-isomorphism, thus a homeomorphism.

□

(The converse to 4.2 (a) fails, with $\mathcal{R} = \text{Comp}$. But see 4.5 below.)

Proposition 4.3. Suppose X has $e(\mathcal{R})$.
(a) If $Y \in \mathcal{R}$ and $X \twoheadrightarrow Y$ is irreducible, then (Y, g) is an \mathcal{R}-cover of X.
(b) If also $PX \in \mathcal{R}$, and supposing $\mathcal{R} = S\mathcal{R}$, then (PX, p_X) is the unique maximal \mathcal{R}-cover of X.

Proof. (a) As in the proof of 2.6, mutatis mutandis
(b) By (a), (PX, p_X) is an \mathcal{R}-cover, and PX is cover-complete. If (Y, g) is another \mathcal{R}-cover of X, then g is onto (by $e(\mathcal{R})$), and there is $Y \twoheadrightarrow PX$ with $gf = p_X$ (since PX is Comp-projective). If Y is cover-complete, f is a homeomorphism.

□

Corollary 4.4. Suppose $\text{ED} \subset \mathcal{R} = S\mathcal{R}$. If $X \in \mathcal{R} \cap \text{Comp}_{\text{po}}$, then (PX, p_X) is the unique maximal \mathcal{R}-cover of X.

Proof. 4.2 (a) and 4.3 (b). □
The following is a qualified converse to 4.2 (a).

Corollary 4.5. Suppose that \(ED \subseteq R = S R \). For \(Y \in R \), the following are equivalent.

(a) \(Y \) is ED.
(b) \(Y \) is cover-complete and \(Y \in \text{Comp}_c \).
(c) \(Y \) is cover-complete and \(Y \) has \(e(R) \).

Proof.

(a) \(\Rightarrow \) (b): 4.2 (b) and ED \(\subseteq \text{Comp}_c \).
(b) \(\Rightarrow \) (c): By 4.2 (a).
(c) \(\Rightarrow \) (a): By 4.3 (b) (using ED \(\subseteq R \) now), \((\Pi_Y, p_Y) \) is the unique maximal \(R \)-cover of \(Y \), so if \(Y \) is cover-complete, \(p_Y \) is a homeomorphism. \(\square \)

Here is one (more) triviality valid in (almost) any \(R \).

Proposition 4.6. Suppose \(\{0\} \in R \). For any \(X \in R \), with \(|X| \geq 1 \), there are maps \(X \overset{e}{\rightarrow} \{0\} \) (in \(R \)). Such an \(e \) is \(R \)-epi iff \(|X| = 1 \).

Proof.

Given such \(e \), there is (the retraction) \(X \overset{r}{\rightarrow} \{0\} \) with \(re = id_{\{0\}} \), so \(e \) is a section. If \(|X| = 1 \), then \(e \) is onto, thus \(R \)-epi. If \(e \) is \(R \)-epi, it becomes an \(R \)-isomorphism, thus a homeomorphism, so \(|X| = 1 \). \(\square \)

5. Epireflectives with Epis not onto, and some maximal covers

First, in summary so far of the situation for \(R \) epireflective in \(\text{Comp} \): If in \(R \), there are epis not onto, then there are no non-void projectives (3.5). That is the case for \(R = \{\emptyset, \{0\}\} \), but here we have the projective (thus unique maximal) covers \(\emptyset \overset{e}{\rightarrow} \emptyset \) and \(\{0\} \overset{e}{\rightarrow} \emptyset \) (3.6). If \(R \) contains the two-point space \(\{0, 1\} \), then \(R \supseteq \text{Comp}_c \) and at least has unique maximal covers for \(X \in \text{Comp}_c \), namely the \((PX, p_X) \) (4.4).

We now display a large class of such \(R \) with some very strange epis, and non-unique maximal covers. This will be the \(R(E) = SP\{E\} \), for \(E \) as follows.

A space \(E \) in \(\text{Comp} \) will be called strongly rigid if \(|E| \geq 2 \) and the only continuous \(E \overset{e}{\rightarrow} E \) are \(id_E \) and constants. Cook [4] has several of these, including a metric one \(M_1 \).

Note that if \(E \) is strongly rigid, then \(\{0, 1\} \subseteq E \) (since \(|E| \geq 2 \), \(E \) is connected (since a clopen \(U \neq \emptyset \), \(E \) would yield \(E \overset{e}{\rightarrow} \{0, 1\} \overset{e}{\rightarrow} E \), \(|E| \geq c \) (since there are non-constant \(E \overset{e}{\rightarrow} [0, 1] \), using the Tietze-Urysohn Theorem), and \([0, 1] \not\subseteq E \) (since \([0, 1] \subseteq E \) would yield non-constant \(E \overset{e}{\rightarrow} [0, 1] \overset{e}{\rightarrow} E \), and \([0, 1] \) is not strongly rigid).

From Cook’s examples, Trnková [15] and Isbell [12] have shown first, that if \(n \) is any cardinal, there is strongly rigid \(E \) with \(|E| \geq n \), and second, that if there is no measurable cardinal, there is a proper class \(E \) of strongly rigid spaces for which, whenever \(E_1 \neq E_2 \) in \(E \), the only continuous \(E_1 \overset{e}{\rightarrow} E_2 \) are constants (and thus, for \(E_1 \neq E_2 \) in \(E \), neither of \(R(E_1) \) and \(R(E_2) \) contains the other).
Now let E be any strongly rigid space. In the following, terms epi, cover, \ldots refer to $\mathcal{R}(E)$.

Of course 4.4 and 4.5 apply here. On the other hand,

Proposition 5.1. Let F be a closed subspace of E. Label the inclusion $E \overset{i_F}{\longrightarrow} F$.

(a) i_F is epi iff $|F| > 1$.

(b) If $|F| = 2$, then (F, i_F) is a cover of E. If $F \in \text{Comp}_E$ and (F, i_F) is a cover of E, then $|F| = 2$.

(In the second part of (b), the supposition ”$F \in \text{Comp}_E$” cannot be dropped, because $E \overset{\text{id}}{\longrightarrow} E$ is a cover.)

Corollary 5.2. Any nonconstant $E \overset{g}{\longrightarrow} \{0, 1\}$ is a maximal cover of E. Any maximal cover of E is equivalent to one of these. Two of these, with g and g', are equivalent covers of E iff $g(\{0, 1\}) = g'(\{0, 1\})$.

In particular, (PE, p_E) is not a cover of E, and there are at least $|E| \geq c$ non-equivalent maximal covers of E;

Proof. (of 5.1)

(a) By 4.6, if $|F| = 1$, then i_F is not epi. Now suppose $|F| > 1$. Suppose $f, g \in \mathcal{R}(E)$ have common codomain - which might as well be supposed of the form E^I - and $fi_F = gi_F$, i.e., $f|_{i_F} = g|_{i_F}$. Then, for any projection $E^I \overset{\pi_i}{\longrightarrow} E$, we have $\pi_i f|_{i_F} = \pi_i g|_{i_F}$. We want $f = g$, which is equivalent to $\pi_i f = \pi_i g \forall i \in I$.

Let $i \in I$. Then each of $\pi_i f$ and $\pi_i g$ is id$_E$ or constant. If $\pi_i f = \text{id}_E$, then $\pi_i f|_{i_F}$ is not constant (since $|F| \geq 2$), so $\pi_i g|_{i_F}$ is not constant, so $\pi_i g = \text{id}_E$ also. If $\pi_i f$ is constant, say c, then $\pi_i f|_{i_F} = c$ also. So $\pi_i g|_{i_F} = c$, and since $|F| \geq 2$, $\pi_i g = c$.

(b) Suppose $|F| = 2$. By (a), i_F is epi. Suppose $i_F f$ is epi. Then f is onto F (since if not, $|\text{range}(f)| = 1$, since $|F| = 2$, but then $|\text{range}(if F)| = 1$ and $i_F f$ is not epi, by 4.6. So f is epi.

Suppose $F \subseteq \text{Comp}_E$. If there are different $p_0, p_1, p_2 \in F$, let $\overline{F} \overset{f}{\longrightarrow} \{0, 1\}$ be $f(i) = p_i$. Then f is not epi (by 4.2 (a)), but $i_F f$ is epi by (a) above.

\[\square \]

Proof. (of 5.2)

If $E \overset{g}{\longrightarrow} \{0, 1\}$ is nonconstant, it is a cover because $F \equiv \{g(0), g(1)\} \overset{g}{\longrightarrow} \{0, 1\}$ is a homeomorphism, and thus a maximal cover because F is cover-complete (being ED 4.2).

Suppose $E \overset{h}{\longrightarrow} Y$ is a maximal cover. Then h is epi, thus nonconstant (6.1). So there are $p_0, p_1 \in Y$ with $h(p_0) \neq h(p_1)$. Define $Y \overset{f}{\longrightarrow} \{0, 1\}$ as $f(i) = p_i$. So hf is a covering-map (by the preceding paragraph), thus f is a
covering map (2.2 (d)). Since \(Y \) is cover-complete, \(f \) is a homeomorphism, so \((Y, h) \) and \((\{0, 1\}, hf)\) are equivalent.

Now suppose \(E_\phi \) are non-constant. There are two homeomorphisms \(h \) of \(\{0, 1\} \), the identity and ”interchange 0 and 1”. And, range \((g) = range(g') \) iff \(g' = gh \) for one of these \(h \).

\[\square \]

Remark 5.3. Cook’s specific strongly rigid \(M_1 \) has these further features:

\(M_1 \) has a countable infinity of disjoint subcontinua; if \(K \) is any proper subcontinuum of \(M_1 \), the only maps \(M_1 \leftarrow \leftarrow \) in \(\mathbb{R} \) are inclusion and constants. (See [4]). Then in the category \(\mathcal{R}(M_1) \), in 5.1 and 5.2, \(E = M_1 \) may be replaced by any proper subcontinuum \(K \) of \(M_1 \) (as the proofs there show).

6. AN APPLICATION TO LATTICE-ORDERED GROUPS

We now convert the situations of maximal covers in \(\mathcal{R} \subset \text{Comp} \) to situations of maximal essential extensions in subcategories of a category of algebras. We use terminology categorically dual to the items in 2.1 (a) - (e), respectively, namely (a) monic, (b) essential extension, (c) essentially complete, maximal essential extension (or, essential completion), (d) injective, injective hull, (e) injectively complete.

The category of algebras is \(W^* \), the category of archimedean lattice-ordered groups with distinguished strong order unit, and \(\ell \)-group homomorphisms carrying unit to unit. \(W^* \) has monics one-to-one, and is injectively complete; see [3]. Consequently, the dual of 2.7 applies to \(W^* \).

For \(X \in \text{Comp} \), the continuous real-valued functions \(C(X) \), with unit the constant function 1, is a \(W^* \)-object, and we have the functor \(W^* \text{Comp} \): for \(X \rightarrow Z \) in \(\text{Comp} \), \(C(X) \xrightarrow{C(f)} C(Z) \) is \(C(f) = f \circ \tau \). This has a left adjoint, the Yosida functor: For each \(G \in W^* \), there is \(YG \in \text{Comp} \) and \(G \xrightarrow{\varphi} C(YG) \) monic in \(W^* \); for each \(G \xrightarrow{\varphi} H \) in \(W^* \), there is unique \(YG \xrightarrow{Y \varphi} YH \) in \(\text{Comp} \) ”realizing \(\varphi \)” as \(\varphi(g) = g \circ Y \varphi \). Note that \(YC(X) \simeq X \), and that \(\varphi \) is one-to-one iff \(Y \varphi \) is onto. (See [10]).

Basic features of \((Y, C)\), and some diagram-chasing, convert the situations in \(\text{Comp} \) discussed in previous sections to ”dual” situations in \(W^* \), as follows. (We omit the calculations).

Suppose \(\mathcal{R} \) is epireflective in \(\text{Comp} \), and \(\{0, 1\} \in \mathcal{R} \) (so \(\text{Comp}_0 \in \mathcal{R} \)). For brevity, set \(*\mathcal{R} = \{ G \in W^*|YG \in \mathcal{R} \} \).

Proposition 6.1.

(a) \(*\mathcal{R} \) is monomcoreflective in \(W^* \).

(b) \(C(X) \xrightarrow{\varphi} H \) is monic in \(*\mathcal{R} \) iff \(X \xrightarrow{Y \varphi} YH \) is epi in \(\mathcal{R} \).

(c) \(*\mathcal{R} \) has an injective other than \(\{0\} \) iff monics in \(*\mathcal{R} \) are one-to-one iff \(\mathcal{R} \)-epis are onto. When this occurs, \(*\mathcal{R} \) is injective-complete, with injective hulls \(G \xrightarrow{C(YG)} C(P(YG)) \).

(d) If \(X \) is ED, then \(C(X) \) is essentially complete in \(*\mathcal{R} \).
(e) If \(X \in \text{Comp}_C \), then \(C(D) \xrightarrow{C_p X} C(PX) \) is the unique maximal essential extension of \(C(X) \) in \(^*R \).

Now consider, as in §5, strongly rigid \(E \in \text{Comp} \) and its generated epireflective \(R(E) \). By 5.1 and 6.1(b), \(^*R(E) \) has monics which are not one-to-one, and thus no \(\not\in \{0\} \) injectives. 6.1(d) and (e) hold in \(^*R(E) \).

Note that \(\{0,1\} \in \text{Comp} \) has \(C(\{0,1\}) = \mathbb{R}^2 \in W^* \), the self-homeomorphisms of \(\{0,1\} \) are the identity and "interchange points", and these correspond to the only self-isomorphisms of \(\mathbb{R}^2 \), which are the identity, and \(H(x,y) = (y,x) \).

From 5.2 we obtain

Corollary 6.2. In \(^*R(E) \), the maximal essential extensions of \(C(E) \) are exactly the \(W^* \)-surjections \(C(E) \xrightarrow{\varphi} \mathbb{R}^2 \). Two of these, \(\varphi \) and \(\varphi' \), are equivalent iff either \(\varphi = \varphi' \), or \(\varphi' = \varphi H \).

REFERENCES

(Received December 2011 – Accepted November 2012)
B. BANASCHEWSKI
Department of Mathematics and Statistics, McMaster University, Hamilton, ON L8S4K1, Canada.

A. W. HAGER (ahager@wesleyan.edu)
Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT 06459 USA