Closed ideals in the functionally countable subalgebra of $C(X)$

AMIR VEISI

Faculty of Petroleum and Gas, Yasouj University, Gachsaran, Iran (aveisi@yu.ac.ir)

Communicated by A. Tamariz-Mascarúa

Abstract

In this paper, closed ideals in $C_c(X)$, the functionally countable subalgebra of $C(X)$, with the m_c-topology are studied. We show that if X is a CUC-space, then $C^*_c(X)$ with the uniform norm-topology is a Banach algebra. Closed ideals in $C_c(X)$ as a modified countable analogue of closed ideals in $C(X)$ with the m-topology, are characterized. For a zero-dimensional space X, we show that a proper ideal in $C_c(X)$ is closed if and only if it is an intersection of maximal ideals of $C_c(X)$. It is also shown that every ideal in $C_c(X)$ with the m_c-topology is closed if and only if it is a P-space if and only if every ideal in $C(X)$ with the m-topology is closed. Also, for a strongly zero-dimensional space X, it is proved that every properly closed ideal in $C^*_c(X)$ is an intersection of maximal ideals of $C^*_c(X)$ if and only if X is pseudocompact if and only if every properly closed ideal in $C^*(X)$ is an intersection of maximal ideals of $C^*(X)$. Finally, we show that if X is a P-space, then the family of e_c-ultrafilters and z_c-ultrafilter coincide.

2020 MSC: 54C30; 54C40; 13C11.

Keywords: zero-dimensional space; functionally countable subalgebra; m-topology; closed ideal; e_c-filter; e_c-ideal; P-space.

1. Introduction

In what follows X stands for an infinite completely regular Hausdorff topological space (i.e., infinite Tychonoff space) and $C(X)$ as usual denotes the ring of all real-valued continuous functions on X. $C^*(X)$ designates the subring of $C(X)$ containing all those members which are bounded over X. For
each \(f \in C(X) \), the zero-set of \(f \), denoted by \(Z(f) \), is the set of zeros of \(f \) and \(X \setminus Z(f) \) is the cozero-set of \(f \) and the set of all zero-sets in \(X \) is denoted by \(Z(X) \). An ideal \(I \) in \(C(X) \) is called a z-ideal if \(f \in I \), \(g \in C(X) \) and \(Z(f) \subseteq Z(g) \), then \(g \in I \). The space \(\beta X \) is the Stone-\(Č \)ech compactification of \(X \) and for any \(p \in \beta X \), the maximal ideal \(M^p \) of \(C(X) \) is the set of all \(f \in C(X) \) for which \(p \in \text{cl}_X Z(f) \). Moreover, \(M^p \) is fixed if and only if \(p \in X \) (in which case, we put \(M^p = M_p = \{ f \in C(X) : p \in Z(f) \} \)). Whenever \(\frac{C(X)}{M^X} \cong \mathbb{R} \), then \(M^p \) is called real, else hyper-real, see [5, Chapter 8]. We recall that a zero-dimensional space is a Hausdorff space with a base consisting of clopen (closed-open) sets. A Tychonoff space \(X \) is called strongly zero-dimensional if for every finite cover \(\{ U_i \}_{i=1}^k \) of \(X \) by cozero-sets there exists a finite refinement \(\{ V_i \}_{i=1}^m \) of mutually disjoint open sets. A Tychonoff space \(X \) is strongly zero-dimensional if and only if \(\beta X \) is zero-dimensional, see [2].

The subring of \(C(X) \) consisting of those functions with countable (resp. finite) image, which is denoted by \(C_c(X) \) (resp. \(C^f(X) \)) is an \(\mathbb{R} \)-subalgebra of \(C(X) \). The subring \(C^*_c(X) \) of \(C_c(X) \) consists of bounded elements of \(C_c(X) \). So \(C^*_c(X) = C^*(X) \cap C_c(X) \). The rings \(C_c(X) \) and \(C^f(X) \) are introduced and investigated in [3] and more studied in [1], [4], [9], [10] and [12]. A topological space \(X \) is called countably pseudocompact, briefly, \(c \)-pseudocompact if \(C_c(X) = C^*_c(X) \). A nonempty subfamily \(F \) of \(Z_c(X) := \{ Z(f) : f \in C_c(X) \} \) is called a \(z_c \)-filter if it is a filter on \(X \). For an ideal \(I \) in \(C_c(X) \) and a \(z_c \)-filter \(F \), we define \(Z_c[I] = \{ Z(f) : f \in I \} \) and \(Z_c^{-1}[F] = \{ f \in C_c(X) : Z(f) \in F \} \). It is observed that \(F = Z_c[Z_c^{-1}[F]] \). Also, \(Z_c[I] \) is a \(z_c \)-filter on \(X \) and \(Z_c^{-1}[Z_c[I]] \supseteq I \). If the equality holds, then \(I \) is called a \(z_c \)-ideal. This means that if \(f \in I \), \(g \in C_c(X) \) and \(Z(f) \subsetneq Z(g) \), then \(g \in I \). So maximal ideals in \(C_c(X) \) are \(z_c \)-ideals. In the same way, for an ideal \(I \) of \(C^*_c(X) \) and a \(z_c \)-filter \(F \) on \(X \), \(E_c(I) \) is an \(e_c \)-filter and \(E_c^{-1}(F) \) is an \(e_c \)-ideal. The counterpart notions are \(E_c^{-1}(E_c(I)) \supseteq I \) and \(E_c(E_c^{-1}(F)) = F \), see [14]. By \(\beta_0 X \), we mean the Banaschewski compactification of a zero-dimensional space \(X \). If \(\beta X \) is zero-dimensional, then \(\beta X = \beta_0 X \), see [13, Section 4.7] for more details. According to [1, Theorems 4.2, 4.8], for any \(p \in \beta_0 X \), the maximal ideal \(M^p \) of \(C_c(X) \) is the set of all \(f \in C_c(X) \) for which \(p \in \text{cl}_{\beta_0 X} Z(f) \), or equivalently, it is the set of all \(f \in C_c(X) \) for which \(\pi_p \in \text{cl}_{\beta_0 X} Z(f) \). Moreover, \(M^p \) is fixed if and only if \(p \in X \) (in which case, we put \(M^p = M_p = \{ f \in C_c(X) : p \in Z(f) \} \). Let \(S \) be a subring of \(C(X) \) and a topological space. An ideal \(I \) of \(S \) is called a closed ideal if \(I = \text{cl}_S I \), briefly, \(I = \text{cl} I \). The paper is organized as follows. In Section 2, we introduce the \(m_c \)-topology on \(C_c(X) \) and derive some corollaries on the ideals of \(C_c(X) \) and \(C^*_c(X) \). We show that if \(X \) is a CUC-space, then \(C^*_c(X) \) with the uniform-norm topology is a Banach algebra. It is shown that an ideal in \(C_c(X) \) is a z-ideal if and only if it is a \(z_c \)-ideal. In [5], closed ideals in \(C(X) \) with the \(m \)-topology are characterized. In Section 3, the countable analogue of this characterization is given. We show that a proper ideal in \(C_c(X) \) is closed if and only if it is an intersection of maximal ideals in \(C_c(X) \). It is also shown that every ideal...
in $C_c(X)$ is closed if and only if X is a P-space if and only if every ideal in $C(X)$ is closed. For a strongly zero-dimensional space X, we prove that every properly closed ideal in $C^*_c(X)$ is an intersection of maximal ideals of $C^*_c(X)$ if and only if X is pseudocompact if and only if every proper closed ideal in $C^*_c(X)$ is an intersection of maximal ideals of $C^*_c(X)$. Finally, we show that if X is a P-space, then the family of e_c-ultrafilters and z_c-ultrafilter coincide.

2. SOME PROPERTIES OF IDEALS IN $C_c(X)$

The m-topology on $C(X)$ was first introduced and studied by Hewitt [8], the generalizing work of E. H. Moore. In his article, he demonstrated that certain classes of topological spaces X can be characterized by topological properties of $C(X)$ with the m-topology. For example, he showed that X is pseudocompact if and only if $C(X)$ with the m-topology is first countable. Several authors have investigated the topological properties of X via properties of $C(X)$, for more information, one can refer to [6] and [11]. The m-topology on $C(X)$ is defined by taking the sets of the form

$$B(f, u) = \{ g \in C(X) : |f(x) - g(x)| < u(x) \text{ for all } x \in X \},$$

as a base for the neighborhood system at f, for each $f \in C(X)$ and each positive unit u of $C(X)$. The m_c-topology (in brief, m_c) on $C_c(X)$ is determined by considering the sets of the form

$$B(f, u) = \{ g \in C_c(X) : |f(x) - g(x)| < u(x) \text{ for all } x \in X \},$$

as a base for the neighborhood system at f, for each $f \in C_c(X)$ and each positive unit u of $C_c(X)$. The uniform topology, or the u_c-topology (in brief, u_c) on $C_c(X)$ is defined by taking the sets of the form

$$B(f, \varepsilon) = \{ g \in C_c(X) : |f(x) - g(x)| < \varepsilon \text{ for all } x \in X \},$$

as a base for the neighborhood system at f, for each $f \in C_c(X)$ and each $\varepsilon > 0$. Equivalently, a base at f is given by all sets

$$B(f, u) = \{ g \in C_c(X) : |f(x) - g(x)| < u(x) \text{ for all } x \in X \},$$

where u is a positive unit of $C^*_c(X)$. We observe that $u_c \subseteq m_c$. It is shown in [15] that $u_c = m_c$ if and only if X is countably pseudocompact. The u_c-topology turns $C^*_c(X)$ into a metric space with $d(f, g) = ||f - g|| = \sup \{|f(x) - g(x)| : x \in X \}$. Also, the m_c-topology is contained in the relative m-topology.

We remind a well-known result that due to Rudin, Pełczyński and Semadeni which asserts that a compact Hausdorff space X is functionally countable (i.e., $C(X) = C_c(X)$) if and only if X is scattered. So if X is a compact scattered space or a countable space, then $C(X) = C_c(X)$, and thus the m_c-topology and the m-topology coincide.

Proposition 2.1. Let I be an ideal in $C_c(X)$ (resp. $C^*_c(X)$) and the topology on $C_c(X)$ be the m_c-topology. Then:

(i) cI is an ideal in $C_c(X)$ (resp. $C^*_c(X)$) and hence I is contained in a closed ideal.

(ii) If I is a proper ideal, then cI is also a proper ideal and hence there is no proper dense ideal in $C_c(X)$ (resp. $C^*_c(X)$).
Proof. We provide the proof for which case I is an ideal in $C_c(X)$. In the same way, the proof holds for the ideal I in $C_c^*(X)$. (i) Clearly, the result holds if $I = C_c(X)$. Suppose that $I \varsubsetneq C_c(X)$. Let $f, g \in \text{cl}I$, $h \in C_c(X)$ and u be a positive unit of $C_c(X)$. Then for some $f' \in B(f, \frac{u}{2}) \cap I$, and $g' \in B(g, \frac{u}{2}) \cap I$, we have $f' + g' \in B(f + g, u) \cap I$. To show that $fh \in \text{cl}I$, we consider the positive unit

$$u_1 = \frac{u}{(|h| + 1)(u + 1)} \in C_c(X).$$

Therefore, for some $f_1 \in B(f, u_1) \cap I$ we have that $|fh - f_1h| < u_1|h| < u$. So $f_1h \in B(fh, u) \cap I$. Moreover, if $f \in \text{cl}I$, then also $-f \in \text{cl}I$. Thus, $\text{cl}I$ contains both $f + g$ and fh. So $\text{cl}I$ is ideal. (ii) Suppose that I is a proper ideal in $C_c(X)$ and $\text{cl}I = C_c(X)$. Consider the constant function $1 \in \text{cl}I$ and $0 < \varepsilon < 1$. Hence, the nonempty set $B(1, \varepsilon) \cap I$ contains a nonzero element of $C_c(X)$, f say. Since $1 - \varepsilon < f(x) < 1 + \varepsilon$ for each $x \in X$, we have $Z(f) = \emptyset$, i.e., f is a unit of $C_c(X)$, which is impossible (because $f \in I$). Thus, $\text{cl}I \subsetneq C_c(X)$, and we are done.

The next result is now immediate.

Corollary 2.2. Any maximal ideal in $C_c(X)$ (resp. $C_c^*(X)$) and hence any intersection of maximal ideals in $C_c(X)$ (resp. $C_c^*(X)$) is closed.

Definition 2.3. An ideal I in a commutative ring with unity R is called a z-ideal in R if for each $a \in I$, we have $M_a \subseteq I$, here M_a is the intersection of all maximal ideals in R containing a.

Evidently, each maximal ideal in R is a z-ideal. This notion of z-ideal is consistent with the notion of z-ideals in $C(X)$, see [5, 4A(5)].

Proposition 2.4. Let X be zero-dimensional and I be an ideal in $C_c^*(X)$. Then I is a z-ideal if and only if $g \in I$ whenever $Z(f^\beta) \subseteq Z(g^\beta)$ with $f \in I$ and $g \in C_c^*(X)$, where f^β is the extension of f to βX.

Proof. (\Rightarrow): Let $f \in I$, $g \in C_c^*(X)$ and $Z(f^\beta) \subseteq Z(g^\beta)$ and let M_f be the intersection of all the maximal ideals in $C_c^*(X)$ containing f. By the assumption, $M_f \subseteq I$. Let M be a maximal ideal in $C_c^*(X)$ containing f. According to [9, Corollary 2.11], M has a form of $M^*_p = \{h \in C_c^*(X) : h^\beta(p) = 0\}$, for some $p \in \beta X$. Now, $Z(f^\beta) \subseteq Z(g^\beta)$ implies that $g \in M$. Hence, $g \in I$.

(\Leftarrow): Let $f \in I$ and $g \in M_f$. Then $f \in M^*_p$ implies that $g \in M^*_p$, i.e., $Z(f^\beta) \subseteq Z(g^\beta)$. Therefore, by the hypothesis, $g \in I$.

Lemma 2.5. Let X be zero-dimensional and I be an ideal in $C_c(X)$. Then I is a z-ideal if and only if it is a z_c-ideal.

Proof. (\Rightarrow): Let I be a z-ideal in $C_c(X)$, $f \in I$ and $Z(f) \subseteq Z(g)$ with $g \in C_c(X)$. We have to show that $g \in I$. Since I is a z-ideal, we have $M_f \subseteq I$, where M_f is the intersection of all the maximal ideals in $C_c(X)$ containing f. It suffices to show that $g \in M_f$. So let $M^*_p (p \in \beta_0 X)$ be any maximal ideal in $C_c(X)$ which contains f, we have to show that $g \in M^*_p$ (see [1, Theorem
4.2]). Indeed \(f \in M_p \) implies that \(p \in \text{cl}_{\beta_0}XZ(f) \) which further implies that
\(p \in \text{cl}_{\beta_0}XZ(g) \), by the assumption, \(Z(f) \subseteq Z(g) \). Hence, \(g \in M_p \). Thus, \(I \) becomes a \(z_c \)-ideal in \(C_c(X) \).

\((\Leftarrow)\) : Let \(I \) be a \(z_c \)-ideal in \(C_c(X) \) and \(f \in I \). We must show \(M_f \subseteq I \). Let \(g \in M_f \). Then \(f \in M_p \) gives \(g \in M_p \), where \(p \in \beta_0X \). Equivalently,
\(\text{cl}_{\beta_0}XZ(f) \subseteq \text{cl}_{\beta_0}XZ(g) \). So
\(Z(f) = \text{cl}_{\beta_0}XZ(f) \cap X \subseteq \text{cl}_{\beta_0}XZ(g) \cap X = Z(g) \).

Now, the assumption yields that \(g \in I \).

Proposition 2.6. If \(I \) is a closed ideal in \(C_c(X) \), then \(I \) is a \(z_c \)-ideal.

Proof. Suppose that \(Z(f) \subseteq Z(g) \), \(f \in I \) and \(g \in C_c(X) \). To show that \(g \in I \), we show that \(g \in \text{cl}I \) because \(I = \text{cl}I \). Let \(u \in C_c(X) \) be a positive unit and let us define a function \(h : X \rightarrow \mathbb{R} \) as follows:

\[
\begin{align*}
 h(x) &= \begin{cases}
 g(x) - \frac{u(x)}{f(x)} & \text{where } g(x) \geq \frac{u(x)}{2}, \\
 0 & \text{where } |g(x)| \leq \frac{u(x)}{2}, \\
 g(x) + \frac{u(x)}{f(x)} & \text{where } g(x) \leq -\frac{u(x)}{2}.
 \end{cases}
\end{align*}
\]

From the continuity of \(h \) on the three closed sets \((g - \frac{u}{2})^{-1}([0, \infty]) \), \((g + \frac{u}{2})^{-1}([0, \infty]) \cap (g - \frac{u}{2})^{-1}((\infty, 0]) \), and \((g + \frac{u}{2})^{-1}((\infty, 0]) \), which their union is \(X \), we infer that \(h \in C(X) \). Moreover, since the ranges of \(g \) and \(f \) are countable, the range of \(h \) is also countable, i.e., \(h \in C_c(X) \). Thus, \(fh \in I \). Furthermore, it is easy to see that \(|g(x) - f(x)h(x)| < u(x) \) for every \(x \in X \), i.e., \(fh \in B(g, u) \cap I \) and thus \(g \in \text{cl}I \), which completes the proof.

The next example shows that the converse of the above proposition is not true in general.

Example 2.7. Consider the zero-dimensional space \(X = \mathbb{Q} \times \mathbb{Q}, \) \(p = (0, 0) \in X \), and put \(O_p = \{ f \in C(X) : p \in \text{int}_X Z(f) \} \) (note, \(C_c(X) = C(X) \) because \(X \) is countable). Recall that \(O_p \) is a \(z_c \)-ideal. We now claim that \(O_p \) is not a closed ideal in \(C(X) \). To see this, consider \(f(x, y) = \frac{|x|}{1 + |x| + |y|} \in C(X) \) and let \(u \) be a fixed positive unit of \(C(X) \). Define a function \(g \) by

\[
 g(x, y) = \begin{cases}
 0 & \text{where } f(x, y) \leq \frac{u(x, y)}{2}, \\
 f(x, y) - \frac{u(x, y)}{2} & \text{where } f(x, y) \geq \frac{u(x, y)}{2}.
 \end{cases}
\]

Obviously, \(g \in C(X) \). Let \(G = \{(x, y) \in X : f(x, y) < \frac{u(x, y)}{2}\} \). Then \(p \in G \subseteq Z(g) \) and therefore \(g \in O_p \), in fact, \(g \in B(f, u) \cap O_p \). It follows that \(f \in \text{cl}_{C(X)}O_p \). On the other hand, the set \(Z(f) = \{p\} \) is not open in \(X \). Hence, \(f \in \text{cl}_{C(X)}O_p \setminus O_p \), i.e., \(O_p \) is not a closed ideal in \(C(X) \).

A Banach algebra \(B \) is an algebra that is a Banach space with a norm that satisfies \(\|xy\| \leq \|x\|\|y\| \) for all \(x, y \in B \), and there exists a unit element \(e \in B \) such that \(ex = xe = x, \|e\| = 1 \).

In [7, Definition 2.2], a topological space \(X \) is called a countably uniform closed-space, briefly, a CUC-space, if whenever \(\{f_n\}_{n \in \mathbb{N}} \) is a sequence of functions of \(C_c(X) \) and \(f_n \rightarrow f \) uniformly, then \(f \) belongs to \(C_c(X) \).
Theorem 2.8. If X is a CUC-space, then $C_c^*(X)$ with the supremum-norm topology is a Banach algebra.

Proof. Let $\{f_n\}_{n \in \mathbb{N}}$ be a Cauchy sequence of functions in $C_c^*(X)$. Given $\varepsilon > 0$, we can find a natural number N such that $\|f_n - f_m\| \leq \varepsilon$ for every $m, n > N$. Thus, $|f_n(x) - f_m(x)| \leq \varepsilon$ for all $x \in X$ and all $m, n > N$. Let $x \in X$ be fixed and a_x be the limit of the numerical sequence $\{f_n(x)\}_{n \in \mathbb{N}}$ in \mathbb{R} (note, \mathbb{R} is a Banach space). Now, define $f : X \to \mathbb{R}$ by $f(x) = a_x$. Let n be fixed, then $|f_n(x) - \lim_{m \to \infty} f_m(x)| \leq \varepsilon$ for each $x \in X$ and each $m > N$. So $\|f_n - f\| \leq \varepsilon$. Since n is arbitrary, we get $f_n \to f$ in the norm, uniformly. Consequently, $f \in C(X)$. Furthermore, our assumption implies that $f \in C_c(X)$. Moreover, $\|f\| \leq \|f - f_n\| + \|f_n\|$ gives f is bounded. Hence, $C_c^*(X)$ is a Banach space. The proof is completed by the fact that $\|fg\| \leq \|f\|\|g\|$ for all $f, g \in C_c^*(X)$.

3. Closed ideals in $C_c(X)$ and $C_c^*(X)$ (with the m_c-topology)

We need the next statement which is the counterpart of [5, 1D(1)] for $C_c(X)$.

Proposition 3.1. If $f, g \in C_c(X)$ and $Z(f)$ is a neighborhood of $Z(g)$, then $f = gh$ for some $h \in C_c(X)$.

Proposition 3.2. Let X be a zero-dimensional space, $f \in C_c(\beta_0 X)$ and let f_0 be the restriction of f on X. Then $\text{int}_{\beta_0 X} Z(f) \subseteq \text{cl}_{\beta_0 X} Z(f_0) \subseteq Z(f)$.

Proof. Let $p \in \text{int}_{\beta_0 X} Z(f)$ and V be an open set in $\beta_0 X$ containing p. Since X is dense in $\beta_0 X$, we have $\emptyset \neq V \cap \text{int}_{\beta_0 X} Z(f) \cap X \subseteq V \cap Z(f_0)$. So $p \in \text{cl}_{\beta_0 X} Z(f_0)$. For the second inclusion, since $Z(f_0) \subseteq Z(f)$, we have that $\text{cl}_{\beta_0 X} Z(f_0) \subseteq \text{cl}_{\beta_0 X} Z(f) = Z(f)$.

Corollary 3.3. Let X be zero-dimensional and $p \in \beta_0 X$. Then

(i) $\bigcap_{f \in M_p} \text{cl}_{\beta_0 X} Z(f) = \{p\}$.

(ii) If $p \in X$, then $\bigcap_{f \in M_{cp}} Z(f) = \{p\}$, i.e., M_{cp} is fixed.

Proof. (i). Recall that $f \in M_p^c$ if and only if $p \in \text{cl}_{\beta_0 X} Z(f)$ (see [1, Theorem 4.2]). Therefore, $p \in \bigcap_{f \in M_p^c} \text{cl}_{\beta_0 X} Z(f)$. Now, we claim that the latter intersection is the singleton set $\{p\}$. On the contrary, suppose that this set contains an element $q \in \beta_0 X$ distinct from p. Since $\beta_0 X$ is zero-dimensional, by [3, Proposition 4.4], there exists $g \in C_c(\beta_0 X)$ such that $p \in \text{int}_{\beta_0 X} Z(g)$ and $g(q) = 1$. Let g_0 be the restriction of g on X. Then by Proposition 3.2, $\text{cl}_{\beta_0 X} Z(g_0)$ contains p but not q. This means that $g_0 \in M_p^c \setminus M_p^g$ which is a contradiction, so (i) holds. (ii). Clearly, $\bigcap_{f \in M_{cp}} Z(f) = \bigcap_{f \in M_{cp}} \text{cl}_{\beta_0 X} Z(f) \cap X = \{p\}$.

In a similar way to Proposition 3.2 and Corollary 3.3, we get:

Proposition 3.4. For a Tychonoff space X and $f \in C^*(X)$, we have that $\text{int}_{\beta X} Z(f^\beta) \subseteq \text{cl}_{\beta X} Z(f) \subseteq Z(f^\beta)$, where f^β is the extension of f to βX. Moreover, if $p \in \beta X$, then $\bigcap_{f \in M_p} \text{cl}_{\beta X} Z(f) = \{p\}$. In particular, if $p \in X$, then $\bigcap_{f \in M_p} Z(f) = \{p\}$, i.e., M_p is fixed.
Proposition 3.5. Let X be zero-dimensional, $p \in \beta_0X$ and π_p be its corresponding point of βX in characterizing of maximal ideals in $C_c(X)$. Then $M_p^p \cap C_c^*(X) \subseteq M^{*p} \cap C_c^*(X)$. Particularly, if X is strongly zero-dimensional, then $M_p^p \cap C_c^*(X) \subseteq M^{*p} \cap C_c^*(X)$.

Proof. In view of [1, Theorems 4.2, 4.8], we have

$$M_p^p = \{ f \in C_c(X) : p \in \text{cl}_{\beta_0X} Z(f) \} = \{ f \in C_c(X) : \pi_p \in \text{cl}_{\beta X} Z(f) \}.$$ Let $f \in M_p^p \cap C_c^*(X)$. Then $\pi_p \in \text{cl}_{\beta X} Z(f)$ and hence $f^\beta(\pi_p) = 0$, by Proposition 3.4. Therefore, $f \in M^{*p} \cap C_c^*(X)$. The second part follows from the assumption, i.e., $\beta_0X = \beta X$ and so $\pi_p = p$. \qed

Remark 3.6. Replacing T with β_0X in [1, Proposition 3.2] implies that for any two zero-sets Z_1 and Z_2 in $Z_c(X)$, we get $\text{cl}_{\beta_0X} (Z_1 \cap Z_2) = \text{cl}_{\beta_0X} Z_1 \cap \text{cl}_{\beta_0X} Z_2$.

Remark 3.7. ([1, Remark 4.12]) If X is zero-dimensional and $f, g \in C_c(X)$, then $\text{cl}_{\beta_0X} Z(f)$ is a neighborhood of $\text{cl}_{\beta_0X} Z(g)$ if and only if there exists $h \in C_c(X)$ such that $Z(g) \subseteq \text{coz}(h) \subseteq Z(f)$.

Proposition 3.8. Let X be zero-dimensional and I a proper ideal in $C_c(X)$ and let $V_c(I) = \{ p \in \beta_0X : M_p^p \supseteq I \}$. Then:

(i) $V_c(I) = \bigcap_{g \in I} \text{cl}_{\beta_0X} Z(g)$.
(ii) If $f \in C_c(X)$ and $\text{cl}_{\beta_0X} Z(f)$ is a neighborhood of $V_c(I)$, then $f \in I$.

Proof. (i). This is easily obtained from the fact that $g \in M_p^p$ if and only if $p \in \text{cl}_{\beta_0X} Z(g)$. (ii). Suppose that

$$V_c(I) = \bigcap_{g \in I} \text{cl}_{\beta_0X} Z(g) \subseteq \text{int}_{\beta_0X} \text{cl}_{\beta_0X} Z(f).$$

Then we have $\bigcup_{g \in I} (\beta_0X \setminus \text{cl}_{\beta_0X} Z(g)) \supseteq \beta_0X \setminus \text{int}_{\beta_0X} \text{cl}_{\beta_0X} Z(f)$. Hence, the collection

$$C = \{ \text{int}_{\beta_0X} \text{cl}_{\beta_0X} Z(f), \beta_0X \setminus \text{cl}_{\beta_0X} Z(g) : g \in I \}$$

is an open cover for the compact set β_0X. Therefore, there is a finite number of elements of I: g_1, g_2, \ldots, g_n say, such that

$$\beta_0X = \text{int}_{\beta_0X} \text{cl}_{\beta_0X} Z(f) \cup (\beta_0X \setminus \text{int}_{\beta_0X} \text{cl}_{\beta_0X} Z(f))$$

$$= \text{int}_{\beta_0X} \text{cl}_{\beta_0X} Z(f) \cup \left(\bigcup_{i=1}^n (\beta_0X \setminus \text{cl}_{\beta_0X} Z(g_i)) \right).$$

Now, we have that

$$\left(\bigcap_{i=1}^n \text{cl}_{\beta_0X} Z(g_i) \right) \cap (\beta_0X \setminus \text{int}_{\beta_0X} \text{cl}_{\beta_0X} Z(f)) = \varnothing.$$

Thus, $\bigcap_{i=1}^n \text{cl}_{\beta_0X} Z(g_i) \subseteq \text{int}_{\beta_0X} \text{cl}_{\beta_0X} Z(f)$. Since I is a proper ideal, the element $g = \sum_{i=1}^n g_i^2$ of I is not a unit of $C_c(X)$ and hence $Z(g) = \bigcap_{i=1}^n Z(g_i) \neq \varnothing$. From Remark 3.6 we conclude that

$$\text{cl}_{\beta_0X} Z(g) = \text{cl}_{\beta_0X} \left(\bigcap_{i=1}^n Z(g_i) \right) = \bigcap_{i=1}^n \text{cl}_{\beta_0X} Z(g_i) \subseteq \text{int}_{\beta_0X} \text{cl}_{\beta_0X} Z(f).$$

© AGT, UPV, 2022

Appl. Gen. Topol. 23, no. 1 | 85
This leads us \(\text{cl}_{\beta_0} X Z(f) \) is a neighborhood of \(\text{cl}_{\beta_0} X Z(g) \). In view of Remark 3.7, there exists \(h \in C_c(X) \) such that \(Z(g) \subseteq \text{coz}(h) \subseteq Z(f) \). So \(Z(f) \) is a neighborhood of \(Z(g) \). By Proposition 3.1, we get \(f \in I \). \(\square \)

Lemma 3.9. Let \(X \) be zero-dimensional and \(g \in C_c(X) \). Then for any neighborhood \(B(g, u) \) of \(g \) in the \(m_c \)-topology, there exists some \(f_u \in B(g, u) \) such that \(\text{cl}_{\beta_0} X Z(f_u) \) is a neighborhood of \(\text{cl}_{\beta_0} X Z(g) \).

Proof. If \(\text{cl}_{\beta_0} X Z(g) \) is an open set in \(\beta_0 X \), then we set \(f_u = g \). In general, we define a function \(f_u : X \to \mathbb{R} \) by

\[
 f_u(x) = \begin{cases}
 g(x) - \frac{u(x)}{2} & \text{where } g(x) \geq \frac{u(x)}{2}, \\
 0 & \text{where } |g(x)| \leq \frac{u(x)}{2}, \\
 g(x) + \frac{u(x)}{2} & \text{where } g(x) \leq -\frac{u(x)}{2}.
 \end{cases}
\]

It is clear that \(f_u \in C(X) \) and further since the range of \(g \) and \(u \) is countable, we get \(f_u \in C_c(X) \). Moreover, \(f_u \in B(g, u) \). To establish the conclusion, consider the function \(h \) below

\[
 h(x) = \begin{cases}
 (g(x) + \frac{u(x)}{2})(g(x) - \frac{u(x)}{2}) & \text{where } |g(x)| \leq \frac{u(x)}{2}, \\
 0 & \text{where } |g(x)| \geq \frac{u(x)}{2}.
 \end{cases}
\]

We observe that \(h \in C_c(X) \). Furthermore, \(Z(g) \subseteq \text{coz}(h) \subseteq Z(f_u) \). Now, Remark 3.7 implies that \(\text{cl}_{\beta_0} X Z(f_u) \) is a neighborhood of \(\text{cl}_{\beta_0} X Z(g) \), and we are through. \(\square \)

Theorem 3.10. Let \(X \) be zero-dimensional and \(I \) a proper ideal in \(C_c(X) \) and let \(V_c(I) \) be the same as the set in Proposition 3.8 \((V_c(I) = \bigcap_{g \in I} \text{cl}_{\beta_0} X Z(g)) \).

Let

\[
 J = \{ f \in C_c(X) : \text{cl}_{\beta_0} X Z(f) \supseteq V_c(I) \}, \text{ and } \bar{I} = \cap \{ M^p_c : M^p_c \supseteq I \}.
\]

Then:

(i) \(\bar{I} \) is a closed ideal in \(C_c(X) \) containing \(I \).
(ii) \(J = \bar{I} \), in other words, \(J \) is the kernel of the hull of \(I \) in the structure space of \(C_c(X) \).
(iii) \(V_c(I) = V_c(\bar{I}) \).
(iv) \(\text{cl} I = \bar{I} \).

Proof. (i). It follows from Corollary 2.2. (ii). Let \(f \in J \) and \(M^p_c (p \in \beta_0 X) \) be a maximal ideal in \(C_c(X) \) containing \(I \). Then

\[
 (3.1) \quad V_c(I) \supseteq V_c(M^p_c) \text{ and so } \text{cl}_{\beta_0} X Z(f) \supseteq V_c(I) \supseteq V_c(M^p_c) = \{ p \}
\]

(note, the last equality follows from Corollary 3.3). Therefore, \(f \in M^p_c \) and thus \(f \in \bar{I} \), i.e., \(J \subseteq \bar{I} \). For the reverse inclusion, we show that if \(f \notin J \), then \(f \notin \bar{I} \). Since \(f \notin J \), there exists \(q \in \beta_0 X \) such that \(q \in V_c(I) \setminus \text{cl}_{\beta_0} X Z(f) \). Therefore, \(g \in M^q_f \) for every \(g \in I \) and hence \(I \subseteq M^q_f \). But \(f \notin M^q_f \). Thus, \(M^q_f \) is a maximal ideal containing \(I \) but not \(f \). This yields that \(f \notin \bar{I} \). (iii). Using (ii) and the definition of \(J \), we have \(V_c(\bar{I}) = V_c(J) \supseteq V_c(I) \). On the other hand, the inclusion \(I \subseteq \bar{I} \) implies that \(V_c(\bar{I}) \subseteq V_c(I) \). So (iii) holds.
Closed ideals in the functionally countable subalgebra of $C(X)$

(iv). By (i), $\text{cl}I \subseteq \bar{I}$. Now, suppose that $g \in \bar{I}$ and u is a positive unit of $C_c(X)$. We claim that $B(g,u) \cap I \neq \emptyset$. According to Lemma 3.9, there exists $f_u \in C_c(X)$ such that $f_u \in B(g,u)$, and $\text{cl}_{\beta_X} \beta(X(f_u))$ is a neighborhood of $\text{cl}_{\beta_X} \beta(X(g))$. Now, it remains to show that $f_u \in I$. From (iii), we infer that $V_c(I) = V_c(\bar{I}) \subseteq \text{cl}_{\beta_X} \beta(X(g)) \subseteq \text{int}_{\beta_X} \beta(X(f_u))$. Proposition 3.8(ii) now yields that $f_u \in I$. Therefore, $f_u \in B(g,u) \cap I$ and so $g \in \text{cl}I$, i.e., $\bar{I} \subseteq \text{cl}I$. □

It is known that a proper ideal in $C(X)$ with the m-topology is closed if and only if it is an intersection of maximal ideals in $C(X)$ (see [5, 7Q(2)]). The next theorem involves the countable analogue characterization of closed ideals in $C_c(X)$. Using Theorem 3.10(iv) and Corollary 2.2, we obtain:

Theorem 3.11. Let X be zero-dimensional and the topology on $C_c(X)$ be the m_c-topology. Then a proper ideal in $C_c(X)$ is closed if and only if it is an intersection of maximal ideals of $C_c(X)$.

Theorem 3.12. Let X be zero-dimensional and the topology on $C_c(X)$ (resp. $C(X)$) be the m_c-topology (resp. the m-topology). Then the following statements are equivalent.

(i) Every ideal in $C(X)$ is closed.

(ii) X is a P-space.

(iii) Every ideal in $C_c(X)$ is closed.

(iv) Every prime ideal in $C_c(X)$ is closed.

Proof. (i) \Rightarrow (ii). It follows from [5, 4J(9), 7Q(2)].

(ii) \Rightarrow (iii). By [3, Proposition 5.3], X is a CP-space. Now, the result is obtained by [3, Theorem 5.8(7)] and Corollary 2.2.

(iii) \Rightarrow (iv). It is evident.

(iv) \Rightarrow (ii). According to [3, Corollary 5.7], it is enough to show that X is a CP-space. Let P be a prime ideal in $C_c(X)$, then by [1, Lemma 4.11(4)], P is contained in a unique maximal ideal M^p of $C_c(X)$, where $p \in \beta X$. Now, by the assumption and Theorem 3.11, we get $P = M^p$, i.e., X is a CP-space. □

Theorem 3.13. Let X be strongly zero-dimensional and the topology on $C^*_c(X)$ (resp. $C^*(X)$) be the m_c-topology (resp. the m-topology). Then the following statements are equivalent.

(i) Every properly closed ideal in $C^*_c(X)$ is an intersection of maximal ideals of $C^*_c(X)$.

(ii) X is pseudocompact.

(iii) Every properly closed ideal in $C^*(X)$ is an intersection of maximal ideals of $C^*(X)$.

Proof. A maximal ideal in $C^*_c(X)$ is of the form $M^p_{\alpha} = \{f \in C^*_c(X) : f^\alpha(p) = 0\}$, where $p \in \beta X$. Also, $M^p = M_{\alpha} \cap C^*_c(X)$, see [9, Corollaries 2.10, 2.11].

(i) \Rightarrow (ii). Suppose that X is not pseudocompact, so $C^*_c(X) \varsubsetneq C_c(X)$, by [9, Theorem 6.3]. Hence, $C_c(X)$ contains an unbounded element, f say. So for some $p \in \beta X$ and the maximal ideal M^p of $C_c(X)$, we have $|M^p(f)|$ is infinitely
large ([9, Proposition 2.4]). In other words, M^p_ε is hyper-real, i.e., $\mathbb{R} \subsetneq \frac{C_\varepsilon(X)}{M^p_\varepsilon}$.

Hence, by [9, Corollary 2.13], $M^p_\varepsilon \cap C_\varepsilon^*(X)$ is not a maximal ideal in $C_\varepsilon^*(X)$. Using Proposition 3.5, we infer that

\begin{equation}
M^p_\varepsilon \cap C_\varepsilon^*(X) \subsetneq M^{*p} \cap C_\varepsilon^*(X).
\end{equation}

Furthermore, since the maximal ideal M^p_ε is closed in $C_\varepsilon(X)$ (Corollary 2.2), the ideal $M^p_\varepsilon \cap C_\varepsilon^*(X)$ is also closed in $C_\varepsilon^*(X)$. We now claim that the latter closed ideal cannot be an intersection of maximal ideals of $C_\varepsilon^*(X)$. Otherwise,

\begin{equation}
M^p_\varepsilon \cap C_\varepsilon^*(X) = \bigcap_{q \in A \subseteq \beta X} \left(M^{*q} \cap C_\varepsilon^*(X) \right),
\end{equation}

for a subset A of βX. Notice that by (3.2), $A \neq \emptyset$ since $p \in A$. Now, we claim that $A = \{p\}$. On the contrary, suppose that A contains an element q distinct from p. We can take $f \in C_\varepsilon(\beta X)$ such that $Z(f)$ is a neighborhood of p and $f(q) = 1$ (note, by the assumption, βX is zero-dimensional). Let f_0 be the restriction of f on X. Then the compactness of βX gives f and hence f_0 are bounded, i.e., $f_0 \in C_\varepsilon(X)$. By density of X in βX, we get $f = f_0^\beta$, where f_0^β is the extension of f_0 to βX. Due to Proposition 3.2, we infer that $p \in \text{cl}_{\beta X} Z(f_0)$, since $p \in \text{int}_{\beta X} Z(f)$. Hence, $f_0 \in M^p_\varepsilon \cap C_\varepsilon^*(X)$.

On the other hand, since $q \notin Z(f)$, we have that $f_0 \notin M^{*q}$. Therefore, $f_0 \in M^p_\varepsilon \cap C_\varepsilon^*(X) \setminus (M^{*q} \cap C_\varepsilon^*(X))$, which contradicts the equation in (3.3). So $A = \{p\}$ and hence $M^p_\varepsilon \cap C_\varepsilon^*(X) = M^{*p} \cap C_\varepsilon^*(X)$. But this also contradicts (3.2). Thus, if X is not pseudocompact, then there exists a closed ideal in $C_\varepsilon^*(X)$ which is not an intersection of maximal ideals of $C_\varepsilon^*(X)$, and we are done.

(ii) \Rightarrow (i). Since X is pseudocompact, $C(X) = C^*(X)$ gives $C_\varepsilon(X) = C_\varepsilon^*(X)$. Now, it follows from Theorem 3.11.

(ii) \Leftrightarrow (iii). It follows from [5, 7Q(3)].

We end the article with some results on e_ε-filters on X and e_ε-ideals in $C_\varepsilon^*(X)$, for more details, see [14, Section 2]. Let $p \in \beta X$ and f^β be the extension of $f \in C^*(X)$ to βX. Let us recall that

\begin{equation}
M^{*p} = \{ f \in C^*_\varepsilon(X) : f^\beta(p) = 0 \} = M^{*p} \cap C^*_\varepsilon(X), \quad \text{and} \quad O^{*p}_\varepsilon = O^p_\varepsilon \cap C^*_\varepsilon(X),
\end{equation}

where

\begin{equation}
M^{*p} = \{ f \in C^*(X) : f^\beta(p) = 0 \}, \quad \text{and} \quad O^p_\varepsilon = \{ f \in C_\varepsilon(X) : p \in \text{int}_{\beta X} \text{cl}_{\beta X} Z(f) \}.
\end{equation}

Lemma 3.14. Let X be strongly zero-dimensional and $p \in \beta X$. Then

\begin{equation}
E_\varepsilon(M^{*p}_\varepsilon) = Z_\varepsilon(O^p_\varepsilon) = Z_\varepsilon(O^{*p}_\varepsilon) = E_\varepsilon(O^{*p}_\varepsilon).
\end{equation}

Proof. By the hypothesis, $\beta X = \beta_0 X$. To get the result, we show the following chain of inclusions holds.

\begin{equation}
E_\varepsilon(M^{*p}_\varepsilon) \subseteq Z_\varepsilon(O^p_\varepsilon) \subseteq Z_\varepsilon(O^{*p}_\varepsilon) \subseteq E_\varepsilon(O^{*p}_\varepsilon) \subseteq E_\varepsilon(M^{*p}_\varepsilon).
\end{equation}

To establish the first inclusion, let $E_\varepsilon(f) := \{ x \in X : |f(x)| \leq \varepsilon \} \in E_\varepsilon(M^{*p}_\varepsilon)$, where $f \in M^{*p}_\varepsilon$ and $\varepsilon > 0$. Then $f^\beta(p) = 0$. Notice that $E_\varepsilon(f) = Z((|f| - \varepsilon)\vee 0)$.
Since \(e \subset C \), in other words, \(\{ (f \mid - \varepsilon) \mid 0 \in O^p_\varepsilon \} \), we have

(3.5) \(\text{cl}_{\beta X} Z((f \mid - \varepsilon) \cup 0) = \text{cl}_{\beta X} E_c^\varepsilon(f) = \{ q \in \beta X : |f\beta(q)| \leq \varepsilon \}. \)

Hence, \(p \in \text{int}_{\beta X} \text{cl}_{\beta X} Z((f \mid - \varepsilon) \cup 0) \), we have \(\text{cl}_{\beta X} E_c^\varepsilon(f) = \{ q \in \beta X : |f\beta(q)| \leq \varepsilon \}. \)

Here, we are going to show the last equality in (3.5). Let \(q \in \beta X \) such that \(|f\beta(q)| \leq \varepsilon \). Since \(E \) is dense in \(\beta X \), there exists a net \((x_\lambda)_{\lambda \in \Lambda} \subseteq X \) converging to \(q \) and so \(f(x_\lambda) = f\beta(x_\lambda) \rightarrow f\beta(q) \). Moreover, \(|f(x_\lambda)| \rightarrow |f\beta(q)| \). Now, let \(V \) be an open set in \(\beta X \) containing \(q \). Then for some \(\lambda_0 \in \Lambda \) and each \(\lambda \geq \lambda_0 \), we have \(x_\lambda \in V \). Furthermore, \(|f\beta(q)| \leq \varepsilon \) yields that \(|f(x_\lambda)| \leq \varepsilon \). Hence, \(V \cap E_c^\varepsilon(f) \neq \emptyset \), i.e., \(q \in \text{cl}_{\beta X} E_c^\varepsilon(f) \).

The second inclusion in (3.4) follows from the fact that \(Z(f) = Z(f, p) \), where \(f \in O^p_\varepsilon \) (and thus \(f \in O^p_\varepsilon \)). To verify the third inclusion, we let \(f \in O^p_\varepsilon \) and show that \(Z(f) \in E_c(O^p_\varepsilon) \). Since \(p \) does not belong to the closed set \(F := \beta X \setminus \text{int}_{\beta X} \text{cl}_{\beta X} Z(f) \) and \(\beta X \) is zero-dimensional, by [3, Proposition 4.4], there is some \(g \in C_\epsilon(\beta X) = C_\epsilon^\varepsilon(\beta X) \) such that \(p \in \text{int}_{\beta X} Z(g) \) and \(g(F) = \{1\} \). Let \(g_0 \) be the restriction of \(g \) on \(X \). Then by Proposition 3.2, \(p \in \text{int}_{\beta X} Z(g_0) \). So \(g_0 \in O^p_\varepsilon \) and hence \(E_c^\varepsilon(g_0) \in E_c(O^p_\varepsilon) \) for all \(\varepsilon > 0 \). Let \(0 < \varepsilon < 1 \) be fixed. Since \(E \) is dense in \(\beta X \), the open set \(\{ q \in \beta X : |g(q)| < \varepsilon \} \) intersects \(X \) nontrivially (since it contains \(p \)). Therefore, \(\emptyset \neq \{ q \in \beta X : |g(q)| \leq \varepsilon \} \) and \(\text{cl}_{\beta X} E_c^\varepsilon(g_0) \subseteq (\beta X \setminus F) \cap X \subseteq Z(f) \).

Now, since the \(Z_c \)-filter (in fact, the \(e_c \)-filter) \(E_c(O^p_\varepsilon) \) contains \(E_c^\varepsilon(g_0) \) and \(E_c^\varepsilon(g_0) \subseteq Z(f) \), we infer that \(Z(f) \in E_c(O^p_\varepsilon) \), and we are done. Finally, the last inclusion in (3.4) follows from the inclusion \(O^p_\varepsilon \subseteq M^p \) and the fact that \(E_c \) preserves the order, see [14, Corollary 2.1].

Theorem 3.15. Let \(X \) be a \(P \)-space and \(F \), an \(e_c \)-filter on \(X \). Then \(F \) is an \(e_c \)-ultrafilter if and only if it is a \(z_c \)-ultrafilter.

Proof. (\(\Rightarrow \)) By [5, 4K(7), 6M(1), 16O], every \(P \)-space is strongly zero-dimensional (see also [15, Proposition 2.12]). By [5, 7L], we have \(O^p = M^p \) for every \(p \in \beta X \). Therefore, \(O^p_\varepsilon = O^p \cap C_\epsilon(X) = M^p \cap C_\epsilon(X) = M^p \) (note, \(\beta X = \beta_0 X \)). Let \(F \) be an \(e_c \)-ultrafilter on \(X \). Then \(E_c^{-1}(F) \) is a maximal ideal in \(C_\epsilon^\varepsilon(X) \), see [14, Proposition 2.14]. Therefore, \(E_c^{-1}(F) = M^p \) for some \(p \in \beta X \). By Lemma 3.14, we have

\[
F = E_c(E_c^{-1}(F)) = E_c(M^p) = Z_c[M^p] = Z_c[M^p]
\]

Since \(M^p \) is a maximal ideal in \(C_\epsilon(X) \), \(F \) is a \(z_c \)-ultrafilter.

(\(\Leftarrow \)) Suppose that \(F \) is a \(z_c \)-ultrafilter. Then \(Z_c^{-1}[F] \) is a maximal ideal in \(C_\epsilon(X) \). So \(Z_c^{-1}[F] = M^p \) for some \(p \in \beta X \). Therefore,

\[
F = Z_c[Z_c^{-1}[F]] = Z_c[M^p] = E_c(M^p)
\]

Since \(M^p \) is a maximal ideal in \(C_\epsilon^\varepsilon(X) \), \(F \) is an \(e_c \)-ultrafilter. \(\square \)

Corollary 3.16. For a strongly zero-dimensional space \(X \) and \(p \in \beta X \), \(M^p \) is the only \(e_c \)-ideal in \(C_\epsilon^\varepsilon(X) \) containing \(O^p_\varepsilon \).
A. Veisi

Proof. Let \(J \) be an \(e_c \)-ideal in \(C_c^*(X) \) which contains \(O_c^p \). Then
\[
E_c^{-1}(E_c(O_c^p)) \subseteq E_c^{-1}(E_c(J)) = J.
\]
By Lemma 3.14, \(E_c(M_c^p) = E_c(O_c^p) \) and therefore
\[
M_c^p = E_c^{-1}(E_c(M_c^p)) = E_c^{-1}(E_c(O_c^p)) \subseteq J.
\]
So \(M_c^p = J \), and we are through. \(\square \)

Acknowledgements. The author is grateful to the referee for useful comments and recommendations towards the improvement of the paper.

References

© AGT, UPV, 2022

Appl. Gen. Topol. 23, no. 1 | 90