Differential gene expression profiles in foetal skin of Rex rabbits with different wool density


  • L. Liu Shandong Agricultural University
  • B. Li Shandong Agricultural University
  • Y.L. Zhu Shandong Agricultural University
  • C.Y. Wang Shandong Agricultural University
  • F.C. Li Shandong Agricultural University




Rex rabbit foetus, wool density, gene expression, gene chip


This study investigated the mechanisms controlling hair follicle development in the Rex rabbit. The Agilent rabbit gene expression microarray was used to determine differentially expressed genes in Rex rabbit foetuses with different wool densities. The expression patterns of selected differentially-expressed genes were further investigated by quantitative real-time PCR. Compared to low wool density rabbits, 1342 differentially expressed probes were identified in high wool density rabbits, including 950 upregulated probes and 392 downregulated probes. Gene ontology analysis revealed that the most upregulated differentially expressed probes belonged to receptors and the most downregulated differentially expressed probes belonged to DNA binding molecules. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that the differentially expressed probes were mainly involved in the sonic hedgehog (Shh) and Eph signalling pathways. The results also suggest that transforming growth factor-beta 1, growth hormone receptor, and the keratin-associated protein 6.1 genes, as well as the Shh and Eph signalling pathways, may be involved in the regulation of hair follicle developmental in Rex rabbits.


Download data is not yet available.

Author Biographies

L. Liu, Shandong Agricultural University

College of Animal Science and Technology

B. Li, Shandong Agricultural University

College of Animal Science and Technology

Y.L. Zhu, Shandong Agricultural University

College of Animal Science and Technology

C.Y. Wang, Shandong Agricultural University

College of Animal Science and Technology

F.C. Li, Shandong Agricultural University

College of Animal Science and Technology


Bickel D., Shah R., Gesualdi S.C., Haerry T.E. 2008. Drosophila follistatin exhibits unique structural modifications and interacts with several TGF-β family members. Ann. Rev. Cell. Dev. Biol., 125: 117-129. http://dx.doi.org/10.1016/j.mod.2007.09.013

Chase H.B. 1954. Growth of the hair. Anim. Res., 34: 113-126.

Chong L.D., Park E.K., Latimer E., Friesel R., Daar I.O. 2000. Fibroblast growth factor receptor-mediated rescue of x-Ephrin B1-induced cell dissociation in Xenopus embryos. Mol. Cell. Biol., 20: 724-734.


Cockett N.E., Shay T.L., Smit M. 2001. Analysis of the sheep genome. Physiol. Genomics, 7: 69-81. http://dx.doi.org/10.1152/physiolgenomics.00051.2001

Foitzik K., Lindner G., Mueller-Roever S., Maurer M., Botchkareva N., Botchkarev V., Handjiski B., Metz M., Hibino T., Soma T., Dotto GP., Paus R. 2000. Control of murine hair follicle regression (catagen) by TGF-β1 in vivo. FASEB J., 14: 752-760.

Harris P.M., Mcbride B.W., Gurnsey M.P. 1993. Direct infusion of a variant of insulin-like growth factor IV into skin of sheep and effects on local blood flow, amino acid utilisation and cell replication. J. Endocrinol., 139, 463- 472. http://dx.doi.org/10.1677/joe.0.1390463

Helbling P.M., Saulnier D.M., Brandli A.W. 2000. The receptor tyrsosine kinase Eph B4 and ephrin-B ligands restrict angiogenic growth of embryonic veins in Xenopus laevis. Development, 127: 269-278.

Hibino T., Nishiyama T. 2004. Role of TGF-β2 in the human hair cycle. Dermatol. Sci., 35: 9-18. http://dx.doi.org/10.1016/j.jdermsci.2003.12.003

Hohl D., de Viragh P.A., Amiguet-Barras F., Gibbs S., Backendorf C., Huber M., 1995. The small proline-rich proteins constitute a multigene family of differentially regulated cornified cell envelope precursor proteins. J. Invest. Dermatol., 104: 902-909.


Kajimura S., Uchida K., Yada T. 2002. Effects of insulin-like growth factors (IGF-I and- II) on growth hormone and prolactin release and gene expression in euryhaline tilapia, Oreochromis mossambicus. Gen. Comp. Endocrinol., 127: 223-231. http://dx.doi.org/10.1016/S0016-6480(02)00055-2

Lobie P.E., Breipohl W., Lincoln D.T., García-Aragón J., Waters M.J. 1990. Localization of the growth hormone receptor/binding protein in skin. J. Endocrinol., 126: 467-71. http://dx.doi.org/10.1677/joe.0.1260467

Mill P., Mo R., Hu M.C., Dagnino L., Rosenblum N.D., Hui C.C. 2005. Shh controls epithelial proliferation via independent pathways that converge on N-Myc. Dev. Cell., 9: 293-303. http://dx.doi.org/10.1016/j.devcel.2005.05.009

Müller E.E., Locatelli V., Cocchi D. 1999. Neuroendocrine control of growth hormone secretion. Phys. Rev. 79: 511-607.

Mu Y.J., Liao H.R., Zhao Z.S., Li D.Q. 2006. Localization of GHR mRNA in the Skin Slice of Sheep. J. Anhui. Agri. Sci. 34: 1295-1296.

Oakes S.R., Haynes K.M., Waters M.J., Herington A.C., Werther G.A. 1992. Demonstration and localization of growth hormone receptor in human skin and skin fibroblasts. J. Clin. Endocrinol. Metab., 75: 1368-1373. http://dx.doi.org/10.1210/jcem.75.5.1430099

Patterson P., Cowley E., Prasongsukarn K. 2006. Service failure recovery: the moderating impact of individual-level cultural value orientation on perceptions of justice. Int. J. Res. Mark., 23: 263-277.

Paus R., Cotsarelis G. 1999. The biology of hair follicles. New Engl. J. Med., 341: 491-497. http://dx.doi.org/10.1056/NEJM199908123410706

Powell B.C, Rogers G.E. 1997. The role of keratin proteins and their genes in the growth, structure and properties of hair. Formation and Structure of Human Hair. 59-148.

Purvis I.W., Franklin I.R. 2005. Major genes and QTL influencing wool production and quality: a review. Genet. Sel. Evol., 37: 97-107.


Rogers M.A., Langbein L., Winter H., Beckmann I., Praetzel S., Schweizer J. 2004. Hair Keratin associated proteins: characterization of a second high sulfur KAP gene domain on human chromosome 21. J. Invest. Dermatol., 122: 147-158.


Rogers M.A. Langbein L., Winter H., Ehmann C., Praetzel S., Korn B., Schweizer J. 2001. Characterization of a cluster of human high/ultrahigh sulfur keratin associated protein genes embedded in the type I keratin gene domain on chromosome 17q12-21. J. Biol. Chem., 276: 19440-19451. http://dx.doi.org/10.1074/jbc.M100657200

Roges G.E. 2004. Hair follicle differentiation and regulation. Int. J. Dev. Biol. 48, 163-170. http://dx.doi.org/10.1387/ijdb.15272381

Schneider M.R., Schmidt-Ullrich R., Paus R. 2009. The hair follicle as a dynamic miniorgan. Curr. Biol., 19: 132-142. http://dx.doi.org/10.1016/j.cub.2008.12.005

Sporn M.B., Roberts A.B., 1992. Transforming Growth Factor-β1: recent progress and new challenges. J. Cell. Biol. 119, 1017- 1021. http://dx.doi.org/10.1083/jcb.119.5.1017

Su X., Zhu S.Q., 1999. Growth hormone receptor structure, function and signal transduction. Foreign Med. 19, 9-14.

Ting-Berreth B.S.A., Chuong C.M. 1996. Sonic Hedgehog in feather morphogenesis: induction of mesenchymal condensation and association with cell death. Dev. Dyn. 207: 157-170.


Wang L.C., Liu Z.Y., Gambardella L., Delacour A., Shapiro R., Yang J., Sizing I., Rayhorn P., Garber A.E., Benjamin D.C., Williams P.K., Taylor F.R., Barrandon Y., Ling L., Burkly C.L. 2000. Regular articles: conditional disrupt ion of hedgehog signalling pathway defines its critical role in hair development and regeneration. J. Invest. Dermatol. 114, 901-908.


Warne W.D., Decosterd G., Okada H., Yano Y., Koide N., Howles C.M. 2009. A combined analysis of data to identify predictive factors for spermatogenesis in men with hypogonadotropic hypogonadism treated with recombinant human folliclestimulating hormone and human chorionic gonadotropin. Fertil. Steril., 92: 594-604. http://dx.doi.org/10.1016/j.fertnstert.2008.07.1720

Wynn P.C., Wallace A.L., Kriby A.C., Annison E.F. 1988. Effects of growth hormone administration on wool growth in Merio sheep. Aust. J. Biol. Sci., 41: 177-187.

Zhang H.L., Wu C.X., Liu Y.F., Gao T.W., Zhao X.D. 2001. Cloning and expression of the cDNA of human keratin 6a in E. coli. J. Fourth. Mil. Med. Univ., 22: 2253-2257.