Detection of polymorphisms and protein domain architectures in rabbit toll-like receptor 2
DOI:
https://doi.org/10.4995/wrs.2014.1457Keywords:
toll-like receptors, single nucleotide polymorphism (SNP), innate immunity, rabbitsAbstract
Toll-like receptors (TLRs) recognise pathogen-associated molecular patterns (PAMPs) derived from pathogens and participate in activation of the immune responses. The TLR2 gene can recognise PAMPs specific to bacterial diseases such as pneumonia. In the present study, we sequenced the coding regions of the TLR2 gene in 18 rabbits from 5 breeds, including New Zealand White, Californian, Flemish Giant, Chinchilla and Fu Jian Yellow. In total, we discovered 11 single nucleotide polymorphisms (SNPs), including 4 non-synonymous SNPs located within the predicted TLR domains. Two non-synonymous SNPs (G205A and G265C) were located in the LRR (leucine-rich repeat) domains of the predicted protein, while another non-synonymous SNP (C943T) was situated in the regions involved in binding to ligands. In addition, one synonymous SNP (C1174T) was distributed in the nucleus regions of heterodimers formed. Then, we revealed five conservative regions in the LRR patterning by prediction and comparison of TLR2 protein domain architectures for multiple species. The SNPs in the TLR2 gene may increase the probability of adaptation to variability of PAMPs due to the rapid evolution of pathogens and the possibility of survival in rabbit populations. The SNPs reported here will be useful to investigate the association between the TLR2 gene and disease resistance in future studies.Downloads
References
Abreu M.T. 2010. Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat. Rev. Immunol., 10: 131-144. doi:10.1038/nri2707
Abu-Amero K.K., Jaeger M., Plantinga T., Netea M.G., Hassan H.Y. 2013. Genetic variation of TLR2 and TLR4 among the Saudi Arabian population: insight into the evolutionary dynamics of the Arabian Peninsula. Genet. Test. Mol. Bioma., 17:166-169. doi:10.1089/gtmb.2012.0281
Akira S., Takeda K. 2004. Toll-like receptor signaling. Nat. Rev. Immunol., 4: 499-511. doi:10.1038/nri1391
Bochud P.Y., Hersberger M., Taffé P., Bochud M., Stein C.M., Rodrigues S.D., Calandra T., Francioli P., Telenti A., Speck R.F., Aderem A. 2007. Polymorphisms in Toll-like receptor 9 influence the clinical course of HIV-1 infection. AIDS, 21: 441 446. doi:10.1097/QAD.0b013e328012b8ac
Botos I., Segal D.M., Davies D.R. 2011. The structural biology of Toll-like receptors. Structure, 19: 447-459. doi:10.1016/j.str.2011.02.004
Brest P., Lapaquette P., Souidi M., Lebrigand K., Cesaro A., Vouret-Craviari V., Mari B., Barbry P., Mosnier J.F., Hébuterne X., Harel-Bellan A., Mograbi B., Darfeuille-Michaud A., Hofman P. 2011. A synonymous variant in IRGM alters a binding site for miR-196 and causes deregulation of IRGM-dependent xenophagy in Crohn’s disease. Nat. Genet., 43: 242-245. doi:10.1038/ng.762
Carrington M., Nelson G.W., Martin M.P., Kissner T., Vlahov D., Goedert J.J., Kaslow R., Buchbinder S., Hoots K., O’Brien S.J. 1999. HLA and HIV-1: heterozygote advantage and B*35 Cw*04 disadvantage. Science, 283: 1748-1752. doi:10.1126/science.283.5408.1748
Fujita M., Into T., Yasuda M., Okusawa T., Hamahira S., Kuroki Y., Eto A., Nisizawa T., Morita M., Shibata K. 2003. Involvement of leucine residues at positions 107, 112, and 115 in a leucinerich repeat motif of human Toll-like receptor 2 in the recognition of diacylated lipoproteins and lipopeptides and Staphylococcus aureus peptidoglycans. J. Immunol., 171: 3675-3683.
Greene J.A., Sam-Agudu N., John C.C., Opoka R.O., Zimmerman P.A., Kazura J.W. 2012. Toll-like receptor polymorphisms and cerebral malaria: TLR2 Δ22 polymorphism is associated with protection from cerebral malaria in a case control study. Malaria J., 47-57.
He J.F., Jia W.H., Fan Q., Zhou X.X., Qin H.D., Shugart Y.Y., Zeng Y.X. 2007. Genetic polymorphisms of TLR3 are associated with Nasopharyngeal carcinoma risk in Cantonese population. BMC Cancer, 7: 194-200. doi:10.1186/1471-2407-7-194
Janeway C.A., Medzhitov R. 2002. Innate immune recognition. Annu. Rev. Immunol., 20: 197-216. doi:10.1146/annurev.immunol.20.083001.084359
Jin M.S., Kim S.E., Heo J.Y., Lee M.E., Kim H.M., Paik S.G., Lee H., Lee, J.O. 2007. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell, 130: 1071-1082. doi:10.1016/j.cell.2007.09.008
Kajikawa O., Frevert C.W., Lin S.M., Goodman R.B., Mongovin S.M., Wong V., Ballman K., Daubeuf B., Elson G., Martin T.R. 2005. Gene expression of Toll-like receptor-2, Toll-like receptor-4, and MD2 is differentially regulated in rabbits with Escherichia coli pneumonia. Gene, 344: 193-202. doi:10.1016/j.gene.2004.09.032
Kang J.Y., Nan X., Jin M.S., Youn S.J., Ryu Y.H., Mah S., Han S.H., Lee H., Paik S.G., Lee J.O. 2009. Recognition of lipopeptide patterns by Toll-like receptor 2-Toll-like receptor 6 heterodimer. Immunity, 31: 873-884. doi:10.1016/j.immuni.2009.09.018
Karaca N., Ozturk G., Gerceker B.T., Turkmen M., Berdeli A. 2013. TLR2 and TLR4 gene polymorphisms in Turkish vitiligo patients. J. Eur. Acad. Dermatol., 27: 85-90. doi:10.1111/j.1468-3083.2012.04514.x
Kruithof E.K., Satta N., Liu J.W., Dunoyer-Geindre S., Fish R.J. 2007. Gene conversion limits divergence of mammalian TLR1 and TLR6. BMC Evol. Biol., 7: 148-158. doi:10.1186/1471-2148-7-148
Krutzik S.R., Ochoa M.T., Sieling P.A., Uematsu S., Ng Y.W., Legaspi A., Liu P.T., Cole S.T., Godowski P.J., Maeda Y., Sarno E.N., Norgard M.V., Brennan P.J., Akira S., Rea T.H., Modlin R.L. 2003. Activation and regulation of Toll-like receptors 2 and 1 in human leprosy. Nat. Med., 9: 525-532. doi:10.1038/nm864
Letunic I., Copley R.R., Pils B., Pinkert S., Schultz J., Bork P. 2006. SMART 5: domains in the context of genomes and networks. Nucleic Acids Res., 34: 257-260. doi:.1093/nar/gkj079
Letunic I., Doerks T., Bork P. 2012. SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res., 40:302-305. doi:10.1093/nar/gkr931
Nicholas F.W. 2005. Animal breeding and disease. Philos. T. Roy. Soc. B, 360: 1529-1536. doi:10.1098/rstb.2005.1674
Potaczek D.P., Nastalek M., Okumura K., Wojas-Pelc A., Undas A., Nishiyama C. 2011. An association of TLR2-16934A>T polymorphism and severity/phenotype of atopic dermatitis. J. Eur. Acad. Dermatol., 25: 715-721. doi:10.1111/j.1468-3083.2010.03812.x
Ray A., Cot M., Puzo G., Gilleron M., Nigou J. 2013. Bacterial cell wall macroamphiphiles: Pathogen-/microbe-associated molecular patterns detected by mammalian innate immune system. Biochimie, 95: 33-42 doi:10.1016/j.biochi.2012.06.007
Sauna Z.E., Kimchi-Sarfaty C. 2011. Understanding the contribution of synonymous mutations to human disease. Nat. Rev. Genet., 12: 683-691. doi:10.1038/nrg3051
Seabury C.M., Cargill E.J., Womack J.E. 2007. Sequence variability and protein domain architectures for bovine Toll-like receptors 1, 5, and 10. Genomics, 90: 502-515. doi:10.1016/j.ygeno.2007.07.001
Seabury C.M, Womack J.E. 2008. Analysis of sequence variability and protein domain architectures for bovine peptidoglycan recognition protein 1 and Toll-like receptors 2 and 6. Genomics, 92: 235-245. doi:10.1016/j.ygeno.2008.06.005
Shinkai H., Tanaka M., Morozumi T., Eguchi-Ogawa T., Okumura N., Muneta Y., Awata T., Uenishi H. 2006 Biased distribution of single nucleotide polymorphisms (SNPs) in porcine Tolllike receptor 1 (TLR1), TLR2, TLR4, TLR5, and TLR6 genes. Immunogenetics, 58: 324-30. doi:10.1007/s00251-005-0068-z
Tabel Y., Berdeli A., Mir S. 2007. Association of TLR2 gene Arg753Gln polymorphism with urinary tract infection in children. Int. J. Immunogenet., 34: 339-405. doi:10.1111/j.1744-313X.2007.00709.x
Takeda K., Akira S. 2005. Toll-like receptors in innate immunity. Int. Immunol., 17: 1-14. doi:10.1093/intimm/dxh186
Takeuchi O., Kawai T., Mühlradt P.F., Morr M., Radolf J.D., Zychlinsky A., Takeda K., Akira S. 2001. Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int. Immunol., 13: 933-940. doi:10.1093/intimm/13.7.933
Tapping R.I., Omueti K.O., Johnson C.M. 2007. Genetic polymorphisms within the human Toll-like receptor 2 subfamily. Biochem. Soc. T., 35: 1445-1448. doi:10.1042/BST0351445
Tschirren B., Andersson M., Scherman K., Westerdahl H., Mittl P.R., Råberg L. 2013. Polymorphisms at the innate immune receptor TLR2 are associated with Borrelia infection in a wild rodent population. Proc. Biol. Sci., 280: 1759. doi: 10.1098/rspb.2013.0364
Uenishi H., Shinkai H. 2009. Porcine Toll-like receptors: the front line of pathogen monitoring and possible implications for disease resistance. Dev. Comp. Immunol., 33: 353-61. doi:10.1016/j.dci.2008.06.001
Vasselon T., Detmers P.A. 2002. Toll receptors: a central element in innate immune responses. Infect. Immun., 70: 1033-1041. doi:10.1128/IAI.70.3.1033-1041.2002
Vignozzi L., Morelli A., Sarchielli E., Comeglio P., Filippi S., Cellai I., Maneschi E., Serni S., Gacci M., Carini M., Piccinni M.P., Saad F., Adorini L., Vannelli G.B., Maggi M. 2012. Testosterone protects from metabolic syndrome-associated prostate inflammation: an experimental study in rabbit. J. Endocrinol., 212: 71-84. doi:10.1530/JOE-11-0289
West A.P., Koblansky A.A., Ghosh S. 2006. Recognition and signaling by toll-like receptors. Annu. Rev. Cell Dev. Biol., 22: 409-437. doi:10.1146/annurev.cellbio.21.122303.115827
White S.N., Taylor K.H., Abbey C.A., Gill C.A., Womack J.E. 2003. Haplotype variation in bovine Toll-like receptor 4 and computational prediction of a positively selected ligandbinding domain. Proc. Natl. Acad. Sci., 100: 10364-10369. doi:10.1073/pnas.1333957100
Downloads
Published
Issue
Section
License
This journal is licensed under a "Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)".