Composition of rabbit caecal microbiota and the effects of dietary quercetin supplementation and sex thereupon




flavonoid, growth, gut, microbiota, Oryctolagus cuniculus, rabbit


The purpose of this study was to add to the current understanding of rabbit caecal microbiota. This involved describing its microbial composition and linking this to live performance parameters, as well as determining the effects of dietary quercetin (Qrc) supplementation (2 g/kg feed) and sex on the microbial population. The weight gain and feed conversion ratio of twelve New Zealand White rabbits was measured from 5 to 12 wk old, blood was sampled at 11 wk old for the determination of serum hormone levels, and the rabbits were slaughtered and caecal samples collected at 13 wk old. Ion 16STM metagenome sequencing was used to determine the microbiota profile. The dominance of Firmicutes (72.01±1.14% of mapped reads), Lachnospiraceae (23.94±1.01%) and Ruminococcaceae (19.71±1.07%) concurred with previous reports, but variation both between studies and individual rabbits was apparent beyond this. Significant correlations between microbial families and live performance parameters were found, suggesting that further research into the mechanisms of these associations could be useful. Negative correlations with the caecal flavonoid content were found, but the latter was not affected by diet, and the effects of quercetin supplementation on the microbiota were very limited, possibly due to the absorption of the quercetin-aglycone from the gastrointestinal tract prior to the caecum. Nonetheless, Clostridiales Family XIII. Incertae Sedis was more abundant in the quercetin-supplemented rabbits (Control: 0.003±0.003%; Qrc: 0.020±0.000; P=0.005), as was the genus Anaerofustis (Control: 0.000±0.002; Qrc: 0.010±0.002; P=0.003). Serum cortisol levels were higher in females, and several microbial families differed between the sexes. Most were more abundant in female rabbits, including the most abundant, the family Eubacteriaceae (Male: 2.93±0.40; Female: 4.73±0.40; P=0.01).


Download data is not yet available.

Author Biographies

M. K. North, Stellenbosch University

Department of Animal Sciences

A. Dalle Zotte, University of Padova

Department of Animal Medicine, Production and Health

L. C. Hoffman, The University of Queensland

Department of Animal Sciences, Stellenbosch University. South Africa

Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland. Australia


Abecia L., Fondevila M., Balcells J., Edwards J.E., Newbold C.J., McEwan N.R. 2005. Molecular profiling of bacterial species in the rabbit caecum. FEMS Microbiol. Lett., 244: 111-115.

Badiola I., de Rozas P., Gonzalez J., Aloy N., Carabaño R. 2016. Recent advances in ERE in growing rabbits. In Proc.: 11th World Rabbit Congress, 15-18 June, 2016. Qingdao, China. 1: 491-502.

Bäuerl C., Collado M.C., Zúñiga M., Blas E., Martínez G.P. 2014. Changes in cecal microbiota and mucosal gene expression revealed new aspects of epizootic rabbit enteropathy. PLoS One, 9: e105707.

Biddle A., Stewart L., Blanchard J., Leschine S. 2013. Untangling the genetic basis of fibrolytic specialization by Lachnospiraceae and Ruminococcaceae in diverse gut communities. Diversity, 5: 627-640.

Braune A., Gütschow M., Engst W., Blaut M. 2001. Degradation of quercetin and luteolin by Eubacterium ramulus. Appl. Environ. Microbiol., 67: 5558-5567.

Clench M.H., Mathias J.R. 1995. The avian cecum: A review. Wilson Bull., 107: 93-121.

Combes S., Fortun-Lamothe L., Cauquil L., Gidenne T. 2013. Engineering the rabbit digestive ecosystem to improve digestive health and efficacy. Animal, 7: 1429-1439.

Cushnie T.P.T., Lamb A.J. 2005. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents, 26: 343-356.

De Nardi R., Marchesini G., Li S., Khafipour E., Plaizier K.J.C., Gianesella M., Ricci R., Andrighetto I., Segato S. 2016. Metagenomic analysis of rumen microbial population in dairy heifers fed a high grain diet supplemented with dicarboxylic acids or polyphenols. BMC Vet. Res., 12: 1-9.

De Vos P., Garrity G.M., Jones D., Krieg N.R., Ludwig W., Rainey F.A., Schleifer K.-H., Whitman W.B. 2009. Bergey’s Manual of Systematic Bacteriology, Volume 3 — The Firmicutes, 2nd edition. Springer, New York, USA.

Duda-Chodak A. 2012. The inhibitory effect of polyphenols on human gut microbiota. J. Physiol. Pharmacol., 63(5): 497-503.

Espley R.V., Butts C.A., Laing W.A., Martell S., Smith H., McGhie T.K., Zhang J., Paturi G., Hedderley D., Bovy A., Schouten H.J., Putterill J., Allan A.C., Hellens R.P. 2014. Dietary flavonoids from modified apple reduce inflammation markers and modulate gut microbiota in mice. J. Nutr., 144: 146-154.

Fan L., Zhao X., Tong Q., Zhou X., Chen J., Xiong W., Fang J., Wang W., Shi C. 2018. Interactions of dihydromyricetin, a flavonoid from vine tea (Ampelopsis grossedentata) with gut microbiota. J. Food Sci., 83: 1444-1453.

García-Amado M.A., Godoy-Vitorino F., Piceno Y.M., Tom L.M., Andersen G.L., Herrera E.A., Domínguez-Bello M.G. 2012. Bacterial diversity in the cecum of the world’s largest living rodent (Hydrochoerus hydrochaeris ). Microb. Ecol., 63: 719-725.

Gosalbes M.J., Durbán A., Pignatelli M., Abellan J.J., Jiménez-Hernández N., Pérez-Cobas A.E., Latorre A., Moya A. 2011. Metatranscriptomic approach to analyze the functional human gut microbiota. PLoS One, 6: e17447.

Green M.R., McCormick C.M. 2016. Sex and stress steroids in adolescence: Gonadal regulation of the hypothalamicpituitary-adrenal axis in the rat. Gen. Comp. Endocrinol., 234: 110-116.

Gunn P.J., Middleton B., Davies S.K., Revell V.L., Skene D.J. 2016. Sex differences in the circadian profiles of melatonin and cortisol in plasma and urine matrices under constant routine conditions. Chronobiol. Int., 33: 39-50.

Herald T.J., Gadgil P., Tilley M. 2012. High-throughput micro plate assays for screening flavonoid content and DPPH-scavenging activity in sorghum bran and flour. J. Sci. Food Agric., 92: 2326-2331.

Huang J., Chen L., Xue B., Liu Q., Ou S., Wang Y., Peng X. 2016. Different flavonoids can shape unique gut microbiota profile in vitro. J. Food Sci., 81: H2273-H2279.

Jami E., White B.A., Mizrahi I. 2014. Potential role of the bovine rumen microbiome in modulating milk composition and feed efficiency. PLoS One, 9: e85423.

Kirschbaum C., Wüst S., Hellhammer D. 1992. Consistent sex differences in cortisol responses to psychological stress. Psychosom. Med., 54: 648-657.

Lee H.C., Jenner A.M., Low C.S., Lee Y.K. 2006. Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota. Res. Microbiol., 157: 876-884.

Lin Y.T., Hsui S.L., Hou Y.C., Chen H.Y., Chao P.D.L. 2003. Degradation of flavonoid aglycones by rabbit, rat and human fecal flora. Biol. Pharm. Bull., 26: 747-751.

Massip K., Combes S., Cauquil L., Zemb O., Gidenne T. 2012. High throughput 16S-DNA sequencing for phylogenetic affiliation of the caecal bacterial community in the rabbit: Impact of the hygiene of housing and of the intake level. In Proc.: 8th INRARRI Symposium on Gut Microbiology, 18-21 June, 2012. Clermont-Ferrand, France. 1: 57.

McBee R.H. 1971. Significance of intestinal microflora in herbivory. Annu. Rev. Ecol. Syst., 2: 165-176.

Michelland R.J., Combes S., Monteils V., Cauquil L., Gidenne T., Fortun-Lamothe L. 2010. Molecular analysis of the bacterial community in digestive tract of rabbit. Anaerobe, 16: 61-65.

Monteils V., Cauquil L., Combes S., Godon J.-J., Gidenne T. 2008. Potential core species and satellite species in the bacterial community within the rabbit caecum. FEMS Microbiol. Ecol., 66: 620-629.

North M.K., Dalle Zotte A., Hoffman L.C. 2018. Effect of quercetin supplementation on the growth, feed efficiency and serum hormone levels of New Zealand White rabbits. S. Afr. J. Anim. Sci., 48: 1128-1139. Accessed: May 2019.

Oteiza P.I., Fraga C.G., Mills D.A., Taft D.H. 2018. Flavonoids and the gastrointestinal tract: Local and systemic effects. Mol. Aspects Med., 61: 41-49.

Rodríguez-Romero N., Abecia L., Fondevila M. 2013. Microbial ecosystem and fermentation traits in the caecum of growing rabbits given diets varying in neutral detergent soluble and insoluble fibre levels. Anaerobe, 20: 50-57.

Russell J.B., Wilson D.B. 1996. Why are ruminal cellulolytic bacteria unable to digest cellulose at low pH? J. Dairy Sci., 79: 1503-

Salanitro J.P., Muirhead P.A., Goodman J.R. 1976. Morphological and physiological characteristics of Gemmiger formicilis isolated from chicken ceca. Appl. Environ. Microbiol., 32: 623-632. Accessed: May 2019.

Sanz Y., Santacruz A., Gauffin P. 2010. Gut microbiota in obesity and metabolic disorders. Proc. Nutr. Soc., 69: 434-441.

Simmering R., Pforte H., Jacobasch G., Blaut M. 2002. The growth of the flavonoid-degrading intestinal bacterium, Eubacterium ramulus, is stimulated by dietary flavonoids in vivo. FEMS Microbiol. Ecol., 40: 243-248.

Sirotek K., Marounek M., Rada V., Benda V. 2001. Isolation and characterization of rabbit caecal pectinolytic bacteria. Folia Microbiol., 46: 79-82.

Steelman S.M., Chowdhary B.P., Dowd S., Suchodolski J., Janečka J.E. 2012. Pyrosequencing of 16S rRNA genes in fecal samples reveals high diversity of hindgut microflora in horses and potential links to chronic laminitis. BMC Vet. Res., 8: 231.

Tilbrook A.J., Turner A.I., Clarke I.J. 2000. Effects of stress on reproduction in non-rodent mammals: The role of glucocorticoids and sex differences. Rev. Reprod., 5: 105-113.

Vasantha Rupasinghe H.P., Wang L., Huber G.M., Pitts N.L. 2008. Effect of baking on dietary fibre and phenolics of muffins incorporated with apple skin powder. Food Chem., 107: 1217-1224.

Yen P.M. 2001. Physiological and molecular basis of thyroid hormone action. Physiol. Rev., 81: 1097-1142.

Zhu Y., Wang C., Li F. 2015. Impact of dietary fiber/starch ratio in shaping caecal microbiota in rabbits. Can. J. Microbiol., 61: 771-784.