Characterisation of Staphylococcus aureus strain causing severe respiratory disease in rabbits


  • Jinxiang Wang Fujian Academy of Agricultural Sciences
  • Lei Sang Fujian Academy of Agricultural Sciences
  • Yanfeng Chen Fujian Academy of Agricultural Sciences
  • Shikun Sun Fujian Academy of Agricultural Sciences
  • Dongjin Chen Fujian Academy of Agricultural Sciences
  • Xiping Xie Fujian Academy of Agricultural Sciences



Staphylococcus aureus, rabbit, respiratory disease, virulence factors, multi-locus sequencing typing


Staphylococcus aureus is acknowledged as one of the important pathogens isolated from humans and animals. However, the S. aureus causing severe respiratory diseases in rabbits have not been well characterised. A S. aureus named FZHW001, isolated from the lungs of dead rabbits with severe respiratory disease, was characterised by artificial infection of rabbits, detection of virulence factors, multi-locus sequencing typing and antimicrobial susceptibility test. The FZHW001 infected rabbits showed identical respiratory symptoms to those of naturally infected ones, and the isolate could spread through directed contact among rabbits. The isolate was typed into clonal complex 121 and carried 7 of 13 tested virulence factors. Furthermore, the isolate was identified to be methicillin-susceptible S. aureus and was susceptible to 7 of 12 tested antibiotics. This study first describes the characteristics of S. aureus isolated from rabbits causing severe respiratory disease, which will help in further understanding the pathogenic mechanisms of S. aureus in rabbits.


Download data is not yet available.

Author Biographies

Jinxiang Wang, Fujian Academy of Agricultural Sciences

Institute of Animal Husbandry and Veterinary

Lei Sang, Fujian Academy of Agricultural Sciences

Institute of Animal Husbandry and Veterinary

Yanfeng Chen, Fujian Academy of Agricultural Sciences

Institute of Animal Husbandry and Veterinary

Shikun Sun, Fujian Academy of Agricultural Sciences

Institute of Animal Husbandry and Veterinary

Dongjin Chen, Fujian Academy of Agricultural Sciences

Institute of Animal Husbandry and Veterinary

Xiping Xie, Fujian Academy of Agricultural Sciences

Institute of Animal Husbandry and Veterinary


Angen O., Feld L., Larsen J., Rostgaard K., Skov R., Madsen A.M., Larsen A.R. 2017. Transmission of methicillin-resistant Staphylococcus aureus to human volunteers visiting a swine farm. Appl. Environ. Microbiol., 23:e01489-17.

Argudin M.A., Cariou N., Salandre O., Le Guennec J., Nemeghaire S., Butaye P. 2013. Genotyping and antimicrobial resistance of Staphylococcus aureus isolates from diseased turkeys. Avian Pathol., 6: 572-580.

Brady R.A., Mocca C.P., Plaut R.D., Takeda K., Burns D.L. 2018. Comparison of the immune response during acute and chronic Staphylococcus aureus infection. PLoS One, 3:e0195342.

Brakstad O.G., Aasbakk K., Maeland J.A. 1992. Detection of Staphylococcus aureus by polymerase chain reaction amplification of the nuc gene. J. Clin. Microbiol., 7: 1654-1660.

CLSI (Clinical and Laboratory Standards Institute). 2013. Performance standards for antimicrobial susceptibility testing, twenty-second informational supplement, CLSI document M100-S22. Wayne, PA, USA.

Crowley E.J., King J.M., Wilkinson T., Worgan H.J., Huson K.M., Rose M.T., McEwan N.R. 2017. Comparison of the microbial population in rabbits and guinea pigs by next generation sequencing. PLoS One, 2: e0165779.

Denayer S., Delbrassinne L., Nia Y., Botteldoorn N. 2017. Food-Borne outbreak investigation and molecular typing: high diversity of Staphylococcus aureus strains and importance of toxin detection. Toxins (Basel), 12: E407.

Doudoulakakis A., Spiliopoulou I., Spyridis N., Giormezis N., Kopsidas J., Militsopoulou M., Lebessi E., Tsolia M. 2017. Emergence of a Staphylococcus aureus clone resistant to mupirocin and fusidic acid carrying exotoxin genes and causing mainly skin infections. J. Clin. Microbiol., 8: 2529-2537.

Edwards A.M., Potts J.R., Josefsson E., Massey R.C. 2010. Staphylococcus aureus host cell invasion and virulence in sepsis is facilitated by the multiple repeats within FnBPA. PLoS Pathog., 6: e1000964.

Enright M.C., Day N.P., Davies C.E., Peacock S.J., Spratt B.G. 2000. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J. Clin. Microbiol., 3: 1008-1015.

Gomez-Sanz E., Torres C., Ceballos S., Lozano C., Zarazaga M. 2013. Clonal dynamics of nasal Staphylococcus aureus and Staphylococcus pseudintermedius in dog-owning household members. Detection of MSSA ST(398). PLoS One, 7: e69337.

Haenni M., Chatre P., Dupieux-Chabert C., Metayer V., Bes M., Madec J.Y., Laurent F. 2017. Molecular epidemiology of methicillin-resistant Staphylococcus aureus in horses, cats, and dogs over a 5-year period in france. Front. Microbiol., 8: 2493.

Hecker M., Mader U., Volker U. 2018. From the genome sequence via the proteome to cell physiology - pathoproteomics and pathophysiology of Staphylococcus aureus. Int. J. Med. Microbiol., 308: 545-557.

Hermans K., Devriese L.A., Haesebrouck F. 2003. Rabbit staphylococcosis: difficult solutions for serious problems. Vet. Microbiol., 1: 57-64.

Jarraud S., Mougel C., Thioulouse J., Lina G., Meugnier H., Forey F., Nesme X., Etienne J., Vandenesch F. 2002. Relationships between Staphylococcus aureus genetic background, virulence factors, agr groups (alleles), and human disease. Infect. Immun., 2: 631-641.

Kurt K., Rasigade J.P., Laurent F., Goering R.V., Zemlickova H., Machova I., Struelens M.J., Zautner A.E., Holtfreter S., Broker B., Ritchie S., Reaksmey S., Limmathurotaskul D., Peacock S.J., Cuny C., Layer F., Witte W., Nubel U. 2013. Subpopulations of Staphylococcus aureus clonal complex 121 are associated with distinct clinical entities. PLoS One., 3:


Lina G., Piémont Y., Godail-Gamot F., Bes M., Peter M.O., Gauduchon V., Vandenesch F., Etienne J. 1999. Involvement of Panton-Valentine Leukocidin–Producing Staphylococcus aureus in Primary Skin Infections and Pneumonia. Clin. Infect. Dis., 29: 1128-1132.

Merz A., Stephan R., Johler S. 2016. Genotyping and DNA microarray based characterization of Staphylococcus aureus isolates from rabbit carcasses. Meat Sci., 112: 86-89.

Moreno-Grúa E., Pérez-Fuentes S., Muñoz-Silvestre A., Viana D., Fernández-Ros A., Sanz-Tejero C., Corpa J., Selva L. 2018. Characterization of livestock-associated methicillin-resistant Staphylococcus aureus isolates obtained from commercial rabbitries located in the Iberian Peninsula. Front. Microbiol., 9: 1812.

Murakami K., Minamide W., Wada K., Nakamura E., Teraoka H., Watanabe S. 1991. Identification of methicillin-resistant strains of staphylococci by polymerase chain reaction. J. Clin. Microbiol., 10: 2240-2244.

Paterson G.K., Larsen A.R., Robb A., Edwards G.E., Pennycott T.W., Foster G., Mot D., Hermans K., Baert K., Peacock S.J., Parkhill J., Zadoks R.N., Holmes M.A. 2012. The newly described mecA homologue, mecALGA251, is present in methicillinresistant Staphylococcus aureus isolates from a diverse range of host species. J. Antimicrob. Chemother., 67: 2809-2813.

Que Y.A., Haefliger J.A., Piroth L., Francois P., Widmer E., Entenza J.M., Sinha B., Herrmann M., Francioli P., Vaudaux P., Moreillon P. 2005. Fibrinogen and fibronectin binding cooperate for valve infection and invasion in Staphylococcus aureus experimental endocarditis. J. Exp. Med., 10: 1627-1635.

Robinson D.A., Enright M.C. 2004. Multilocus sequence typing and the evolution of methicillin-resistant Staphylococcus aureus. Clin. Microbiol. Infect., 2: 92-97.

Sato T., Usui M., Konishi N., Kai A., Matsui H., Hanaki H., Tamura Y. 2017. Closely related methicillin-resistant Staphylococcus aureus isolates from retail meat, cows with mastitis, and humans in Japan. PLoS One, 10: e0187319.

Schmidt T., Kock M.M., Ehlers M.M. 2017. Molecular Characterization of Staphylococcus aureus isolated from bovine mastitis and close human contacts in South African dairy herds: genetic diversity and interspecies

host transmission. Front. Microbiol., 8: 511.

Sicot N., Khanafer N., Meyssonnier V., Dumitrescu O., Tristan A., Bes M., Lina G., Vandenesch F., Vanhems P., Etienne J., Gillet Y. 2013. Methicillin resistance is not a predictor of severity in community acquired Staphylococcus aureus necrotizing pneumonia-results of a prospective

observational study. Clin. Microbiol. Infect., 19: E142-148.

Srinivasan V., Sawant A.A., Gillespie B.E., Headrick S.J., Ceasaris L., Oliver S.P. 2006. Prevalence of enterotoxin and toxic shock syndrome toxin genes in Staphylococcus aureus isolated from milk of cows with mastitis. Foodborne Pathog. Dis., 3: 274-283.

Vancraeynest D., Haesebrouck F., Deplano A., Denis O., Godard C., Wildemauwe C., Hermans K. 2006. International dissemination of a high virulence rabbit Staphylococcus aureus clone. J. Vet. Med. B., 9: 418-422.

Verkade E., Kluytmans J. 2014. Livestock-associated Staphylococcus aureus CC398: animal reservoirs and human infections. Infect. Genet. Evol., 21: 523-530.

Viana D., Selva L., Penadés M., Corpa J.M. 2015. Screening of virulence genes in Staphylococcus aureus isolates from rabbits. World Rabbit Sci., 23: 185-195.

Weisburg W.G., Barns S.M., Pelletier D.A., Lane D.J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol., 2: 697-703.

Xie Y., He Y., Gehring A, Hu Y, Li Q., Tu SI., Shi X. 2011. Genotypes and toxin gene profiles of Staphylococcus aureus clinical isolates from China. PLoS One, 12: e28276.